回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python190
用r语言做cca时怎么显示物种环境相关系数

用r语言做cca时怎么显示物种环境相关系数

假设你要计算两组数值的线性相关系数,方法有两种:第一种方法:键入函数:=CORREL(数据列或行1,数据列或行2)。该函数是计算数据列或行1及数据列或行2的线性相关系数。例如有一列数据为A1:A20,还有一列数据为B1:B20,=CORRE
Python160
基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析主要步骤:将数据存成csv格式,逗号分隔在R中,读取数据,然后将数据转成矩阵形式加载lars包,先安装调用lars函数确定Cp值最小的步数确定筛选出的变量,并计算回归系数具体代码如下: 需要注意的地方: 1、
Python330
reduced major axis regression什么时候用

reduced major axis regression什么时候用

压轴回归分析(reduced major axis),也叫模型2回归或者SMA回归。这一方法适用于当数据变量具有误差,且科研人员自身无法控制时。这样的情况比普通最小二乘法(OLS)更适合(根据我对我数据结果比较,RMA斜率比OLS的大,截距
Python850
回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python140
python中支持向量机回归需要把数据标准化吗?

python中支持向量机回归需要把数据标准化吗?

在使用支持向量机(SVM)进行回归分析时, 数据标准化是很重要的.SVM 中的核函数是基于输入数据点之间的距离来定义的,如果数据点之间的距离是不一致的,那么核函数的结果就会受到影响。标准化可以确保所有特征在相同尺度上进行计算,避免因为某些特
Python750
R语言怎么做多因变量的多元线性回归

R语言怎么做多因变量的多元线性回归

举个例子:一般人在身高相等的情况下,血压收缩压Y与体重X1和年龄X2有关,抽取13组成年人数据(如下图),构建Y与X1、X2的线性回归关系。1.先创建一个数据框blood:  blood&lt-data.frame(     X1
Python150
如何用R语言做线性相关回归分析

如何用R语言做线性相关回归分析

cor()函数可以提供双变量之间的相关系数,还可以用scatterplotMatrix()函数生成散点图矩阵不过R语言没有直接给出偏相关的函数;我们要是做的话,要先调用cor.test()对变量进行Pearson相关性分析,得到简单相关
Python210
R语言实现线性拟合

R语言实现线性拟合

formula代表拟合的公式,如Y~X,则对因变量Y和自变量X作线性拟合拟合模型为 y=a+bx ,如Y 0+X或Y X+0则除对因变量Y和自变量X作线性拟合外,还规定改直线必过原点及拟合模型为 y=x 。 lm对象即lm函数返回
Python450
多元统计分析概述

多元统计分析概述

后期会把每一章的学习笔记链接加上多元统计分析是研究多个随机变量之间相互依赖关系及其内在统计规律的一门学科 在统计学的基本内容汇总,只考虑一个或几个因素对一个观测指标(变量)的影响大小的问题,称为 一元统计分析 。 若考
Python90
回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python200
R语言:表格的条形图转化

R语言:表格的条形图转化

接着上一篇文章 R语言:表格的线图转化 继续练习,这次是直方图。 前段时间在视频课程学习过直方图案例,有一个citysales表格,表示3种产品,在5个城市的销量。 运用的是“barplot”命令,程序如下: citysales
Python230
求大神帮忙用R语言自己写一个GLM广义线性模型的函数

求大神帮忙用R语言自己写一个GLM广义线性模型的函数

请教如何实现广义线性模型GLM作图1、广义线性模型GLM很简单,举个例子,药物的疗效和服用药物的剂量有关。这个相关性可能是多种多样的,可能是简单线性关系(发烧时吃一片药退烧0.1度,两片药退烧0.2度,以此类推;这种情况就是一般线性模型),
Python230
R语言 广义加性模型GAM

R语言 广义加性模型GAM

原文链接:http:tecdat.cn?p=208821导言这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。2回归模型假设我们有一些带有两个属性Y
Python150
R语言初步-数据转换-4.mutate()函数

R语言初步-数据转换-4.mutate()函数

mutate:变异 突变 改变 数据修改 紧接着创建新的列gain和speed 新创建的列同时也可以使用(但是保留的方法仍然是赋值给某个名称): 由于系统显示限制,最后一列没有展示出来,运行view()函数即可: 如果只想要
Python250
R语言线性回归

R语言线性回归

esrequre &lt- function(x){ #求标准差平方估计值sum &lt- 0sum0 &lt- 0for(i in 1:length(x)){sum0 &lt- residu[i]^2sum
Python190
求助,如何求logit模型里各个自变量的边际效应

求助,如何求logit模型里各个自变量的边际效应

logit模型和简单的线性模型不同,自变量的边际效应并不是简单等于其系数。 x_j对于y的边际效应一般来讲计算方法如下 EViews本身并没有直接求边际效应的程序。不过,可以通过EViews的预测功能求得边际效应。如果简单的样本内预测值是X
Python440
怎样进行大数据的入门级学习?

怎样进行大数据的入门级学习?

1R programming如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:R in action:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配
Python170