求一个用c语言写的DES加密算法~~

Python023

求一个用c语言写的DES加密算法~~,第1张

using system

using system.security.cryptography

using system.io

using system.text

public class encryptstringdes {

public static void main(string)

return

}

// 使用utf8函数加密输入参数

utf8encoding utf8encoding = new utf8encoding()

byte.tochararray())

// 方式一:调用默认的des实现方法des_csp.

des des = des.create()

// 方式二:直接使用des_csp()实现des的实体

//des_csp des = new des_csp()

// 初始化des加密的密钥和一个随机的、8比特的初始化向量(iv)

byte iv = {0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef}

des.key = key

des.iv = iv

// 建立加密流

symmetricstreamencryptor sse = des.createencryptor()

// 使用cryptomemorystream方法获取加密过程的输出

cryptomemorystream cms = new cryptomemorystream()

// 将symmetricstreamencryptor流中的加密数据输出到cryptomemorystream中

sse.setsink(cms)

// 加密完毕,将结果输出到控制台

sse.write(inputbytearray)

sse.closestream()

// 获取加密数据

byte)

}

console.writeline()

//上面演示了如何进行加密,下面演示如何进行解密

symmetricstreamdecryptor ssd = des.createdecryptor()

cms = new cryptomemorystream()

ssd.setsink(cms)

ssd.write(encrypteddata)

ssd.closestream()

byte decryptedchararray = utf8encoding.getchars(decrypteddata)

console.writeline("解密后数据:")

console.write(decryptedchararray)

console.writeline()

}

}

编译:

d:\csharp>csc des_demo.cs

microsoft (r) c# compiler version 7.00.8905

copyright (c) microsoft corp 2000. all rights reserved.

运行实例:

d:\csharp>des_demo.exe 使用c#编写des加密程序的framework

加密结果:

3d 22 64 c6 57 d1 c4 c3 cf 77 ce 2f d0 e1 78 2a 4d ed 7a a8 83 f9 0e 14 e1 ba 38

7b 06 41 8d b5 e9 3f 00 0d c3 28 d1 f9 6d 17 4b 6e a7 41 68 40

完成一个DES 算法 详细设计 ,内容包括:

DES(Data Encryption Standard)是一种用于电子数据加密的对称密钥块加密算法 .它以64位为分组长度,64位一组的明文作为算法的输入,通过一系列复杂的操作,输出同样64位长度的密文。DES 同样采用64位密钥,但由于每8位中的最后1位用于奇偶校验,实际有效密钥长度为56位。密钥可以是任意的56位的数,且可随时改变。

DES 使用加密密钥定义变换过程,因此算法认为只有持有加密所用的密钥的用户才能解密密文。DES的两个重要的安全特性是混淆和扩散。其中 混淆 是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。 扩散 是指明文和密钥中的每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码的安全。

DES算法的基本过程是换位和置换。如图,有16个相同的处理阶段,称为轮。还有一个初始和最终的排列,称为 IP 和 FP,它们是反向的 (IP 取消 FP 的作用,反之亦然)。

在主轮之前,块被分成两个32位的一半和交替处理;这种纵横交错的方案被称为Feistel 方法。Feistel 结构确保了解密和加密是非常相似的过程——唯一的区别是在解密时子键的应用顺序是相反的。其余的算法是相同的。这大大简化了实现,特别是在硬件中,因为不需要单独的加密和解密算法。

符号表示异或(XOR)操作。Feistel 函数将半块和一些键合在一起。然后,将Feistel 函数的输出与块的另一半组合在一起,在下一轮之前交换这一半。在最后一轮之后,两队交换了位置;这是 Feistel 结构的一个特性,使加密和解密过程类似。

IP 置换表指定64位块上的输入排列。其含义如下:输出的第一个比特来自输入的第58位第二个位来自第50位,以此类推,最后一个位来自第7位输入。

最后的排列是初始排列的倒数。

展开函数被解释为初始排列和最终排列。注意,输入的一些位在输出时是重复的输入的第5位在输出的第6位和第8位中都是重复的。因此,32位半块被扩展到48位。

P排列打乱了32位半块的位元。

表的“左”和“右”部分显示了来自输入键的哪些位构成了键调度状态的左和右部分。输入的64位中只有56位被选中;剩下的8(8、16、24、32、40、48、56、64)被指定作为奇偶校验位使用。

这个排列从56位键调度状态为每轮选择48位的子键。

这个表列出了DES中使用的8个S-box,每个S-box用4位的输出替换6位的输入。给定一个6位输入,通过使用外部的两个位选择行,以及使用内部的四个位选择列,就可以找到4位输出。例如,一个输入“011011”有外部位“01”和内部位“1101”。第一行为“00”,第一列为“0000”,S-box S5对应的输出为“1001”(=9),即第二行第14列的值。

DES算法的基本流程图如下:

DES算法是典型的对称加密算法,在输入64比特明文数据后,通过输入64比特密钥和算法的一系列加密步骤后,可以得到同样为64比特的密文数据。反之,我们通过已知的密钥,可以将密文数据转换回明文。 我们将算法分为了三大块:IP置换、16次T迭代和IP逆置换 ,加密和解密过程分别如下:

实验的设计模式是自顶向下的结构,用C语言去分别是先各个函数的功能,最后通过主函数将所有函数进行整合,让算法更加清晰客观。

通过IP置换表,根据表中所示下标,找到相应位置进行置换。

对于16次迭代,我们先将传入的经过 IP 混淆过的64位明文的左右两部分,分别为32位的和32位的 。之后我们将和进行交换,得到作为IP逆置换的输入:

子密钥的生成,经历下面一系列步骤:首先对于64位密钥,进行置换选择,因为将用户输入的64 位经历压缩变成了56位,所以我们将左面和右面的各28位进行循环位移。左右两部分分别按下列规则做循环移位:当 ,循环左移1位;其余情况循环左移2位。最后将得到的新的左右两部分进行连接得到56位密钥。

对半块的 Feistel 操作分为以下五步:

如上二图表明,在给出正确的密码后,可以得到对应的明文。

若密码错误,将解码出错误答案。

【1】 Data Encryption Standard

【2】 DES算法的详细设计(简单实现)

【3】 深入理解并实现DES算法

【4】 DES算法原理完整版

【5】 安全体系(一)—— DES算法详解

#include <stdio.h> #include <string.h> #include <windows.h> #include <conio.h> #include "Schedle.h" class CShift{ public: DWORDLONG mask[16] int step[16] CShift(){ for(int i=0i<16i++){ step[i]=2 mask[i]=0xc000000 } step[0]=step[1]=step[8]=step[15]=1 mask[0]=mask[1]=mask[8]=mask[15]=0x8000000 } } class CDES{ public: CDES(){ m_dwlKey=0 m_dwlData=0 ConvertTableToMask(dwlKey_PC_1,64) //PrintTable(dwlKey_PC_1,7,8) ConvertTableToMask(dwlKey_PC_2,56) ConvertTableToMask(dwlData_IP,64) ConvertTableToMask(dwlData_Expansion,32) ConvertTableToMask(dwlData_FP,64) ConvertTableToMask(dwlData_P,32) Generate_S() } void PrintBit(DWORDLONG) void EncryptKey(char *) unsigned char* EncryptData(unsigned char *) unsigned char* DescryptData(unsigned char*) private: void ConvertTableToMask(DWORDLONG *,int) void Generate_S(void) void PrintTable(DWORDLONG*,int,int) DWORDLONG ProcessByte(unsigned char*,BOOL) DWORDLONG PermuteTable(DWORDLONG,DWORDLONG*,int) void Generate_K(void) void EncryptKernel(void) DWORDLONG Generate_B(DWORDLONG,DWORDLONG*) /*For verify schedule permutation only*/ DWORDLONG UnPermuteTable(DWORDLONG,DWORDLONG*,int) /**************************************/ DWORDLONG dwlData_S[9][4][16] CShift m_shift DWORDLONG m_dwlKey DWORDLONG m_dwlData DWORDLONG m_dwl_K[17] } void CDES::EncryptKey(char *key){ printf("\nOriginal Key: %s",key) m_dwlKey=ProcessByte((unsigned char*)key,TRUE) // PrintBit(m_dwlKey) m_dwlKey=PermuteTable(m_dwlKey,dwlKey_PC_1,56) // PrintBit(m_dwlKey) Generate_K() // printf("\n******************************************\n") } void CDES::Generate_K(void){ DWORDLONG C[17],D[17],tmp C[0]=m_dwlKey>>28 D[0]=m_dwlKey&0xfffffff for(int i=1i<=16i++){ tmp=(C[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]) C[i]=((C[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff tmp=(D[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]) D[i]=((D[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff m_dwl_K[i]=(C[i]<<28)|D[i] m_dwl_K[i]=PermuteTable(m_dwl_K[i],dwlKey_PC_2,48) } } DWORDLONG CDES::ProcessByte(unsigned char *key,BOOL shift){ unsigned char tmp DWORDLONG byte=0 int i=0 while(i<8){ while(*key){ if(byte!=0) byte<<=8 tmp=*key if(shift) tmp<<=1 byte|=tmp i++ key++ } if(i<8) byte<<=8 i++ } return byte } DWORDLONG CDES::PermuteTable(DWORDLONG dwlPara,DWOR 基于des算法的rfid安全系统

DLONG* dwlTable,int nDestLen){ int i=0 DWORDLONG tmp=0,moveBit while(i<nDestLen){ moveBit=1 if(dwlTable[i]&dwlPara){ moveBit<<=nDestLen-i-1 tmp|=moveBit } i++ } return tmp } DWORDLONG CDES::UnPermuteTable(DWORDLONG dwlPara,DWORDLONG* dwlTable,int nDestLen){ DWORDLONG tmp=0 int i=nDestLen-1 while(dwlPara!=0){ if(dwlPara&0x01) tmp|=dwlTable[i] dwlPara>>=1 i-- } return tmp } void CDES::PrintTable(DWORDLONG *dwlPara,int col,int row){ int i,j for(i=0i<rowi++){ printf("\n") getch() for(j=0j<colj++) PrintBit(dwlPara[i*col+j]) } } void CDES::PrintBit(DWORDLONG bitstream){ char out[76] int i=0,j=0,space=0 while(bitstream!=0){ if(bitstream&0x01) out[i++]='1' else out[i++]='0' j++ if(j%8==0){ out[i++]=' ' space++ } bitstream=bitstream>>1 } out[i]='\0' strcpy(out,strrev(out)) printf("%s **:%d\n",out,i-space) } void CDES::ConvertTableToMask(DWORDLONG *mask,int max){ int i=0 DWORDLONG nBit=1 while(mask[i]!=0){ nBit=1 nBit<<=max-mask[i] mask[i++]=nBit } } void CDES::Generate_S(void){ int i int j,m,n m=n=0 j=1 for(i=0i<512i++){ dwlData_S[j][m][n]=OS[i] n=(n+1)%16 if(!n){ m=(m+1)%4 if(!m) j++ } } } unsigned char * CDES::EncryptData(unsigned char *block){ unsigned char *EncrytedData=new unsigned char(15) printf("\nOriginal Data: %s\n",block) m_dwlData=ProcessByte(block,0) // PrintBit(m_dwlData) m_dwlData=PermuteTable(m_dwlData,dwlData_IP,64) EncryptKernel() // PrintBit(m_dwlData) DWORDLONG bit6=m_dwlData for(int i=0i<11i++){ EncrytedData[7-i]=(unsigned char)(bit6&0x3f)+46 bit6>>=6 } EncrytedData[11]='\0' printf("\nAfter Encrypted: %s",EncrytedData) for(i=0i<8i++){ EncrytedData[7-i]=(unsigned char)(m_dwlData&0xff) m_dwlData>>=8 } EncrytedData[8]='\0' return EncrytedData } void CDES::EncryptKernel(void){ int i=1 DWORDLONG L[17],R[17],B[9],EK,PSB L[0]=m_dwlData>>32 R[0]=m_dwlData&0xffffffff for(i=1i<=16i++){ L[i]=R[i-1] R[i-1]=PermuteTable(R[i-1],dwlData_Expansion,48)//Expansion R EK=R[i-1]^m_dwl_K[i]//E Permutation PSB=Generate_B(EK,B)//P Permutation R[i]=L[i-1]^PSB } R[16]<<=32 m_dwlData=R[16]|L[16] m_dwlData=PermuteTable(m_dwlData,dwlData_FP,64) } unsigned char* CDES::DescryptData(unsigned char *desData){ int i=1 unsigned char *DescryptedData=new unsigned char(15) DWORDLONG L[17],R[17],B[9],EK,PSB DWORDLONG dataPara dataPara=ProcessByte(desData,0) dataPara=PermuteTable(dataPara,dwlData_IP,64) R[16]=dataPara>>32 L[16]=dataPara&0xffffffff for(i=16i>=1i--){ R[i-1]=L[i] L[i]=PermuteTable(L[i],dwlData_Expansion,48)//Expansion L EK=L[i]^m_dwl_K[i]//E Permutation PSB=Generate_B(EK,B)//P Permutation L[i-1]=R[i]^PSB } L[0]<<=32 dataPara=L[0]|R[0] dataPara=PermuteTable(dataPara,dwlData_FP,64) // PrintBit(dataPara) for(i=0i<8i++){ DescryptedData[7-i]=(unsigned char)(dataPara&0xff) dataPara>>=8 } DescryptedData[8]='\0' printf("\nAfter Decrypted: %s\n",DescryptedData) return DescryptedData } DWORDLONG CDES::Generate_B(DWORDLONG EKPara,DWORDLONG *block){ int i,m,n DWORDLONG tmp=0 for(i=8i>0i--){ block[i]=EKPara&0x3f m=(int)(block[i]&0x20)>>4 m|=block[i]&0x01 n=(int)(block[i]<<1)>>2 block[i]=dwlData_S[i][m][n] EKPara>>=6 } for(i=1i<=8i++){ tmp|=block[i] tmp<<=4 } tmp>>=4 tmp=PermuteTable(tmp,dwlData_P,32) return tmp } void main(void){ CDES des des.EncryptKey("12345678") unsigned char *result=des.EncryptData((unsigned char*)"DemoData") des.DescryptData(result) }[1]