最短路径算法

Python041

最短路径算法,第1张

最短路径算法主要有三种:floyd算法、Dijkstra算法、Bellman-Ford(贝尔曼-福特)

一、floyd算法

基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) <Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

二、Dijkstra算法

算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行过程如图所示:

三、Bellman-Ford(贝尔曼-福特)

算法的流程如下:

给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

1.数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;

2.以下操作循环执行至多n-1次,n为顶点数: 

对于每一条边e(u, v),如果Distant[u] + w(u, v) <Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值; 

若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

3.为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) <Distant[v]的边,则图中存在负环路,即是说该图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

问题:如何检测一个链表是否有环,如果有,那么如何确定环的起点.

要求 : 空间复杂度为O(1), 时间复杂度为O(n).

假设一个有环链表如下图: 利用floyd判圈算法可以做到下面的三件事:

使用两个指针slow和fast。两个指针都从链表的起始处S开始。slow每次向后移动一步,fast每次向后移动两步。若在fast到达链表尾部前slow与fast相遇了,就说明链表有环。

这里可以简单的证明一下:反证法,假如没有环,那么slow永远追不上fast,那么在fast到达链表尾部前slow不会fast相遇了。若相遇了,链表就有环。

当slow和fast相遇时,slow和fast必定在环上,所以只要让一者不动,另一者走一圈直到相遇,走过的节点数就是环的长度。

如图所示,设AB=n, SA=m。设环的长度为L。

假设slow走过的节点数为i,那么有:

i = m + n + a La为slow绕过的环的圈数。

因为fast速度为slow的两倍,所以相同时间走过的节点数为slow的两倍,所以有:

2 i = m + n + b Lb为fast绕过的环的圈数。

两者做差有 : i = (b-a) L。

所以可知,fast和slow走过的距离是环的整数倍。

所以有m+n=L。

所以此时让slow回到起点S,,fast仍然在B。

让两个指针以每次一步的速度往前走。

当走了m步时,可发现slow和fast正好都在A处,即是环的起点。

floyd判圈算法是一个很有趣的算法,在某些题目上用处很大,比如下面这个。

给出一个数组 nums 包含 n + 1 个整数,每个整数是从 1 到 n (包括边界),保证至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。

注意事项

对于这个题目