怎么求两个向量叉积?

Python09

怎么求两个向量叉积?,第1张

(a1,a2,a3)x(b1,b2,b3)=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)

|向量c|=|向量a×向量b|=|a||b|sin<a,b>

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a

扩展资料:

向量几何表示

向量可以用有向线段来表示。

有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。

代数规则

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

摘自: https://www.cnblogs.com/yupeter007/p/5325575.html

矩阵的存储默认是按列进行存储的

matrix (data = NA, nrow = 1, ncol = 1, byrow =FALSE, dimnames = NULL)

创建一个c(1:12)的三行四列的矩阵,

colnames<-c("c1","c2","c3","c4")

rownames<-c("r1","r2","r3")

x<-matrix(1:12,nrow=3,ncol=4,byrow=TRUE,dimnames=list(rownames,colnames))

x

c1 c2 c3 c4

r1 1 2 3 4

r2 5 6 7 8

r3 9 10 11 12

y<-t(x)

若是针对的是一个向量

y<-(1:10)

装置后得到的是行向量

[1] "matrix"

若要的到列向量则

matrix(rnorm(100),nrow=10)

matrix(2,ncol=n,nrow=m)

4.1创建对角矩阵

diag(x,ncol=n,nrow=m)

若x为矩阵 则diag(x)将会提取矩阵x的对角,则返回的是向量值

返回的是以矩阵对角的对角矩阵

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

n<-ncol

m<-nrow

为矩阵的行和列命名

rownames(x)<-c()

colnames(x)<c()

A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:

A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:

对矩阵求逆

方法一:直接用solve(x)

方法二:加载包MASS

library(MASS)

ginv(matrix)

向量的内积

x<-c(1:5)

y<-c(3:7)

向量的外积

向量、矩阵的外积(叉积)

设x和y是n维向量,则x%o%y表示x与y作外积.

, , 2, 1

[,1] [,2] [,3] [,4]

[1,]28 14 20

[2,]4 10 16 22

[3,]6 12 18 24

, , 1, 2

[,1] [,2] [,3] [,4]

[1,]3 12 21 30

[2,]6 15 24 33

[3,]9 18 27 36

, , 2, 2

[,1] [,2] [,3] [,4]

[1,]4 16 28 40

[2,]8 20 32 44

[3,] 12 24 36 48

outer()是更为强大的外积运算函数,outer(x,y)计算向量x与y的外积,它等价于x %o%y

函数。outer()的一般调用格式为

outer(x,y,fun=”*”)

det(x),求矩阵x的行列式值

qr(x)$rank求x矩阵的秩

解线性方程组和求矩阵的逆矩阵

a×(b×c)=b(a·c)-c(a·b),套入公式,所以r×(ω×r)=ωr^2-r(ω·r)

拉格朗日公式:a × (b × c) = b(a·c)− c(a·b)

二重向量叉乘化简公式及证明,可以简单地记成“BAC-CAB”。这个公式在物理上简化向量运算非常有效。需要注意的是,这个公式对微分算子不成立。

这里给出一个和梯度相关的一个情形;这是一个霍奇拉普拉斯算子的霍奇分解的特殊情形。

扩展资料

运算法则:

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。

参考资料来源:百度百科-叉乘