R语言中特殊值NaN、Inf 、NA、NULL

Python010

R语言中特殊值NaN、Inf 、NA、NULL,第1张

1. NaN

R中的无定义数用NaN表示,即“Not a Number(非数)”。

不过在R中,R实际上是把NaN视作一个数的,当其参与运算时,返回结果总是NaN。我们可以使用is.nan()函数来检测计算结果有无定义,但是需要注意的是,对于NaN而言,is.finite()和is.infinite()都会返回FALSE。

2. NA

NA表示缺失值,即“Missing value”,是“not available”的缩写

3. Inf

R中的无穷大用Inf表示(即Infinity,无穷大),负无穷表示为-Inf。

要检查一个数是否为无穷,可以使用is.finite()或者is.infinite()函数

3. NULL

R语言中,NA代表位置上的值为空,NULL代表连位置都没有,变量为空,其长度为0,表明“空无一物”

将两个数据进行除法运算

而log2_foldchange就是我们需要的数据,发现里面有许多 NaN、 -Inf 、Inf ,想办法进行数据清洗。

都到这一步了,再绘制两个图形玩玩:

R语言中存在一些空值(null-able values),当我们进行数据分析时,理解这些值是非常重要的。

通常来说,R语言中存在:

这四种数据类型在R中都有相应的函数用以判断。

NA即Not available,是一个 长度为1的逻辑常数 ,通常代表缺失值。NA可以被强制转换为任意其他数据类型的向量。

可以采用is.na()进行判断。另外,NA和“NA”不可以互换。

NULL是一个 对象(object) ,当 表达式或函数产生无定义的值 或者 导入数据类型未知的数据 时就会返回NULL。

可以采用is.null()进行判断。

NaN即Not A Number,是一个 长度为1的逻辑值向量

可以采用is.nan()进行判断。另外,我们可以采用is.finite()或is.infinite()函数来判断元素是有限的还是无限的,而对NaN进行判断返回的结果都是False。

Inf即Infinity无穷大,通常代表一个很大的数或以0为除数的运算结果,Inf说明数据并没有缺失(NA)。

可以采用is.finite()或is.finite()进行判断。

理解完四种类型数值以后,我们来看看该采取什么方法来处理最最常见的缺失值NA。

小白学统计在推文《有缺失值怎么办?系列之二:如何处理缺失值》里说“ 处理缺失值最好的方式是什么?答案是:没有最好的方式。或者说,最好的方式只有一个,预防缺失,尽量不要缺失。

在缺失数很少且数据量很大的时候,直接删除法的效率很高,而且通常对结果的影响不会太大。

如数据框df共有1000行数据,有10行包含NA,不妨直接采用函数na.omit()来去掉带有NA的行,也可以使用tidyr包的drop_na()函数来指定去除哪一列的NA。

用其他数值填充数据框中的缺失值NA。

使用tidyr包的replace_na()函数。

使用tidyr包的fill()函数将上/下一行的数值填充至选定列中NA。

除此之外,类似原理的填充法还有均值填充法(用该变量的其余数值的均值来填充)、LOCF(last observation carried forward)、BOCF(baseline observation carried forward)、WOCF(worst observation carried forward)等。

当分类自变量出现NA时,把缺失值单独作为新的一类。

在性别中,只有男和女两类,虚拟变量的话以女性为0,男性为1。如果出现了缺失值,可以把缺失值赋值为2,单独作为一类。由于将缺失值赋值,在统计时就不会把它当做缺失值删除,避免了由于这一个变量缺失而导致整个观测值被删除的情况。

假定有身高和体重两个变量,要填补体重的缺失值,我们可以把体重作为因变量,建立体重对身高的回归方程,然后根据身高的非缺失值,预测体重的缺失值。

参考资料:

R语言-v1-基础知识

Iretara  12-17 21:18

以例题的形式简述R语言基础知识

# 读取文件

setwd(" 文件链接的时候,用  /  ")

install.packages(" readxl ")

library(readxl)

library (tidyverse)

hw1_a<- read_excel ("hw1_a.xlsx", col_types=c("numeric", "numeric", "numeric", "numeric", "numeric") )

hw1_b<- read_excel ("hw1_b.xlsx")

#读取csv

library(readr)

hw1_a<- read_csv ("/")

View(hw1_a)

# 描述型函数

hw1_a + hw1_b 表

#描述最小值,最大值,中值,均值,标准差

Str (hw1_a) #查看数据并指出各个 变量的形式

summary (hw1_a) #指出各个变量的形式, 最小值,最大值,中值,均值

library(psych)

describe (hw1_a) #比summary更简便的方法, 可以直接读取标准差等;但是,使用describe不可读取 NA值, 可以尝试使用 Hmisc包中 describe

描述型函数-R

# 连接

hw1_a %>% inner_join (hw1_b, by ="ID")

hw1_a %>% left_join (hw1_b, by ="ID")

hw1_a %>% right_join (hw1_b, by ="ID")

hw1_a %>% full_join (hw1_b, by ="ID")

inner_join<- inner_join (hw1_a,hw1_b, by =“ID”) #报告合并后的 总行数 ,178行

full_join<- full_join (hw1_a,hw1_b, by ="ID")

( nrow (full_join)) #报告合并后的 总行数 ,200行

>  length (full_join$ID)

#找出各个列的 缺失值

i<-NA

a<-NA

for(i in 1:length(full_join[1,])){ a[i]<- sum(is.na( full_join[,i] ) ) }

paste("缺失值是",a)

#缺失值总数

sum(is.na(full_join))

#删除缺失值 na.omit()

full_join1=filter(full_join,!is.na(full_join[2]))

full_join1=filter(full_join1,!is.na(full_join1[3]))

full_join1=filter(full_join1,!is.na(full_join1[4]))

full_join1=filter(full_join1,!is.na(full_join1[5]))

full_join1=filter(full_join1,!is.na(full_join1[6]))

full_join1=filter(full_join1,!is.na(full_join1[7]))

full_join1=filter(full_join1,!is.na(full_join1[8]))

sum(is.na(full_join1))

找出Income中的 极端值 并滤掉对应行的数据

quantile (hw1_a$Income,c(0.025,0.975))

hw1_a2= filter (hw1_a,Income>14168.81 &Income<173030.92)

#使用dplyr进行数据转换

arrange()

>arrange (hw1_a,Income) #默认升序

>arrange(hw1_a, desc (Income)) #desc降序,NA排序一般最后

select()

>select (hw1_a, - (Years_at_Address:Income)) #不要变量

>rename (hw1_a, In_come=Income) #改名

>select(hw1_a,Income, exerything ()) #把Income放在前面

拓例题1:

library(nycflights13)

view(flights)

#counts

(1)

not_cancelled <- flights %>%

filter(! is.na(dep_delay), !is.na(arr_delay))

(2)

not_cancelled %>%

group_by (year,month,day) %>%

summarize (mean=mean(dep_delay))

(3)

delays <- not_cancelled %>%

group_by (tailnum) %>%

summarize (delay=mean(arr_delay))

ggplot (data=delays,mapping=aes(x= delay))+

geom_freqpoly (binwidth=10) #freqpoly

(4)

delays <- not_cancelled %>%

group_by(tailnum) %>%

summarize(delay=mean(arr_delay,na.rm=TRUE), n=n() ) #tailnum的次数

ggplot(data=delays,mapping=aes(x= n, y=delay))+

geom_point(alpha=1/10)

拓例题2:

#请按照价格的均值,产生新的变量price_new, 低于均值为“低价格”,高于均值为“高价格”。 同样对市场份额也是,产生变量marketshare_new, 数值为“低市场份额”和“高市场份额”

price=data1$price

pricebar=mean(price)

price_new= ifelse (price>pricebar,“高价格”,”低价格”)

marketshare=data1$marketshare

marketsharebar=mean(marketshare)

marketshare_new=ifelse(marketshare>marketsharebar ,“高市场份额”,”低市场份额”)

data1= mutate (data1,price_new,marketshare_new)

#可视化

#将Income 对数化

lninc<- log (hw1_a$Income)

#画出直方图和 density curve密度曲线

hist (lninc,prob=T)

lines ( density (lninc),col="blue")

# 添加额外变量 的办法,在 aes()中添加 样式 (color、size、alpha、shape)

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income, alpha= Is_Default))

# 按照Is_Default 增加一个维度,使用明暗程度作为区分方式

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income,

alpha=factor( Is_Default ) ))

#使用形状作为另外一种区分方式

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income,

shape=factor( Is_Default)))

可视化-R

拓展:

#将 flight1 表和 weather1 表根据共同变量进行内连接,随机抽取 100000 行数据, 将生产的结果保存为 flight_weather。 (提示:sample_n()函数,不用重复抽取)

flight_weather <- inner_join(flight1, weather1) %>% sample_n(100000)

# 从 flight_weather表中对三个出发机场按照平均出发延误时间排降序,并将结果保留在 longest_delay表中。把结果展示出来

longest_delay<- flight_weather %>%

group_by(origin) %>%

summarize(delay=mean(dep_delay, na.rm=TRUE )) %>%

arrange(desc(delay))

#根据不同出发地(origin)在平行的 3 个图中画出风速 wind_speed(x 轴)和出发 延误时间 dep_delay(y 轴)的散点图。

ggplot(data= flight_weather) +

geom_point(mapping=aes(x=wind_speed,y=dep_delay))+

facet_grid(.~origin, nrow = 3 ) # 按照class分类,分成3行

#根据 flight_weather 表,画出每个月航班数的直方分布图,x 轴为月份,y 轴是每个 月份航班数所占的比例。

ggplot(data=flight_weather)+

geom_bar(mapping=aes(x=month, y=..prop .., group=1))

#根据 flight_weather 表,画出每个月航班距离的 boxplot 图,x 轴为月份,y 轴为 航行距离, 根据的航行距离的中位数从低到高对 x 轴的月份进行重新排序

ggplot(data=flight_weather)+

geom_boxplot(mapping=aes(x= reorder (month,distance,FUN=median),y=distance))

线性回归

# 以Income作为因变量,Years at Employer作为自变量,进行 OLS回归

m1<- lm (Income ~ Years_at_Employer,data=hw1_a)

#通过***判断显著性

summary (m1)

#画出拟合直线

ggplot(data= hw1_a)+

geom_point(aes(x=Income,y=Years_at_Employer))+

geom_abline(data= m1,col= "blue")

#证明拟合直线是最优的

b0=runif(20000,-5,5)

b1=runif(20000,-5,5)

d<-NA

sum<-NA

n<-1

while(n<=20000){

for(i in 1:24){

d[i]<-(hw1_a $ Income[i]-b0[n]-b1[n]*hw2$ Years_at_Employer[i])^2}

sum[n]<-sum(d)

n<-n+1

}

resi=m1$residuals

resi2=sum(resi^2)

check=sum(as.numeric(sum<resi2))

check