R语言学习笔记之聚类分析R语言学习笔记之聚类分析使用k-means聚类所需的包:factoextracluster #加载包library(factoextra)library(cluster)l#数据准备使用内置的R数据集USArrests#load t2023-02-25Python160
R语言学习笔记之聚类分析R语言学习笔记之聚类分析使用k-means聚类所需的包:factoextracluster #加载包library(factoextra)library(cluster)l#数据准备使用内置的R数据集USArrests#load t2023-02-25Python140
LD衰减图LD衰减距离指的是,当平均LD系数衰减到一定大小(最大值的一半0.5以下)的时候,对应的物理距离。通常用LD衰减距离来描述LD衰减速度。LD衰减速度越快,即衰减距离越小,说明该群体遗传多样性越高;LD衰减速度越慢,通常驯化程度越高,选择强2023-02-25Python190
kmeans算法用Python怎么实现第一种: 引用scikit-learn包from sklearn.cluster import KMeansk = 10 # Kmeans的k值model = Kmeans(n_clusters=k)X = [[1, 2], [1, 32023-02-25Python170
R语言:TOPSIS综合评价法进行多属性最优方案选择一般地, TOPSIS综合评价法 主要包含两个步骤:计算权重和计算相对接近度。如需详细了解 TOPSIS综合评价法 的原理和方法,请自行百度,网上有许多非常详尽的原理说明和案例讲解。 根据熵权法确定各个指标的权重;计算各指标信息熵,指标2023-02-25Python210
【R语言】非度量多维标度分析法(Non-metric multidimensional scaling,NMDS)非度量多维尺度分析(NMDS 分析)是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法,能够反映对象间的顺序关系。与PCoA类似,NMDS可以基于任何类型距离矩阵对对象(样方)2023-02-24Python180
有矩阵了,怎么在r语言中做空间计量模型可以。建立空间误差模型和空间滞后模型最好是用R语言做,当然用 Geoda 或 Eviews 等软件做也可以,首先看清题目要求: 矩阵C是由矩阵A的前3行和前3列构成的矩阵。 分析目的,矩阵A的前3行和前3列到底是多少。 第一步:我们先看矩阵2023-02-24Python160
R语言如何实现近邻插值(1)计算已知类别数据及中的点与当前点的距离;(2)按距离递增次序排序(3)选取与当前点距离最小的k个点(4)确定前K个点所在类别出现的频率(5)返回频率最高的类别作为当前类别的预测LagrangePolynomial <- f2023-02-24Python190
R语言:有关差异分析的检验方法1 读取,计算均值,箱图观察 2 查看数据分布 2.1 hist直方图 2.2 qqnorm散点图 3 Shapiro-Wilk正态性检验 4 方差齐性检验意义:方差分析就是在大家误差水平2023-02-24Python200
r软件连续性变量可以直接放进去吗不能。连续型变量可以在某个区间取任何值,任何位数离散型变量只能取离散型数据。在R语言中,变量分为连续型变量,有序型变量和名义型变量。(1)计算已知类别数据及中的点与当前点的距离;(2)按距离递增次序排序(3)选取与当前点距离最小的k个点(42023-02-24Python180
R语言如何进行重复抽样?题目是population=50000,抽取200个样本容量为10的样本。在线等~谢谢啦假设你的population是1到50000,那么抽取一个样本容量为10的样本:sample(1:50000,10)如果是可重复抽样(就是这个10个样本中的数字可以重复,也叫放回抽样)那么sample(1:50000,10,replace=2023-02-24Python120
R语言做聚类分析用统计量确定类的个数.有什么代码或者包吗聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的2023-02-24Python170
R语言-KNN算法1、K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本2023-02-24Python150
R语言入门--第十四节(聚类分析)(1)定义每一个观测值为一类; (2)计算每一类和其它各类的距离; (3)把“距离”最短的两类合并成一类,这样类的个数就减少一个; (4)重复步骤1和步骤2,直到包含所有观测值的类合并成单个类为止。 基于5种营养标准含量(变2023-02-24Python200
R语言入门--第十四节(聚类分析)(1)定义每一个观测值为一类; (2)计算每一类和其它各类的距离; (3)把“距离”最短的两类合并成一类,这样类的个数就减少一个; (4)重复步骤1和步骤2,直到包含所有观测值的类合并成单个类为止。 基于5种营养标准含量(变2023-02-24Python250
R语言-KNN算法1、K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本2023-02-24Python230
聚类算法之K均值算法(k-means)的Python实现K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V2023-02-24Python220
R语言-KNN算法1、K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本2023-02-24Python130
R语言计算α多样性指数与画图操作之前安装好ggplot2、vegan、ggpubr包。如下: install.packages("ggplot2")install.packages("ggpubr") install.p2023-02-24Python150
R语言做聚类分析用统计量确定类的个数.有什么代码或者包吗聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的2023-02-24Python190