R语言中实现层次聚类模型

Python018

R语言中实现层次聚类模型,第1张

R语言中实现层次聚类模型

大家好!在这篇文章中,我将向你展示如何在R中进行层次聚类。

什么是分层聚类?

分层聚类是一种可供选择的方法,它可以自下而上地构建层次结构,并且不需要我们事先指定聚类的数量。

该算法的工作原理如下:

将每个数据点放入其自己的群集中。

确定最近的两个群集并将它们组合成一个群集。

重复上述步骤,直到所有数据点位于一个群集中。

一旦完成,它通常由树状结构表示。

让我们看看分层聚类算法可以做得多好。我们可以使用hclust这个。hclust要求我们以距离矩阵的形式提供数据。我们可以通过使用dist。默认情况下,使用完整的链接方法。

这会生成以下树形图:

从图中我们可以看出,群集总数的最佳选择是3或4:

要做到这一点,我们可以使用所需数量的群集来切断树cutree。

现在,让我们将它与原始物种进行比较。

它看起来像算法成功地将物种setosa的所有花分为簇1,并将virginica分为簇2,但是与花斑杂交有困难。如果你看看显示不同物种的原始图,你可以理解为什么:

让我们看看我们是否可以通过使用不同的连接方法更好。这一次,我们将使用平均连接方法:

这给了我们以下树状图:

我们可以看到,群集数量的两个最佳选择是3或5.让我们用cutree它来将它降到3个群集。

我们可以看到,这一次,该算法在聚类数据方面做得更好,只有6个数据点出错。

我们可以如下绘制它与原始数据进行比较:

这给了我们下面的图表:

内部颜色与外部颜色不匹配的所有点都是不正确聚类的点。

一、层次聚类

1)距离和相似系数

r语言中使用dist(x, method = "euclidean",diag = FALSE, upper = FALSE, p = 2) 来计算距离。其中x是样本矩阵或者数据框。method表示计算哪种距离。method的取值有:

euclidean                欧几里德距离,就是平方再开方。

maximum                切比雪夫距离

manhattan 绝对值距离

canberra Lance 距离

minkowski            明科夫斯基距离,使用时要指定p值

binary                    定性变量距离.

定性变量距离: 记m个项目里面的 0:0配对数为m0 ,1:1配对数为m1,不能配对数为m2,距离=m1/(m1+m2)

diag 为TRUE的时候给出对角线上的距离。upper为TURE的时候给出上三角矩阵上的值。

r语言中使用scale(x, center = TRUE, scale = TRUE) 对数据矩阵做中心化和标准化变换。

如只中心化 scale(x,scale=F) ,

r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。下面利用sweep对矩阵x进行极差标准化变换

?

1

2

3

>center <-sweep(x, 2, apply(x, 2, mean)) #在列的方向上减去均值。

>R <-apply(x, 2, max) -apply(x,2,min)   #算出极差,即列上的最大值-最小值

>x_star <-sweep(center, 2, R, "/")        #把减去均值后的矩阵在列的方向上除以极差向量

?

1

2

3

>center <-sweep(x, 2, apply(x, 2, min)) #极差正规化变换

>R <-apply(x, 2, max) -apply(x,2,min)

>x_star <-sweep(center, 2, R, "/")

有时候我们不是对样本进行分类,而是对变量进行分类。这时候,我们不计算距离,而是计算变量间的相似系数。常用的有夹角和相关系数。

r语言计算两向量的夹角余弦:

?

1

2

y <-scale(x, center =F, scale =T)/sqrt(nrow(x)-1)

C <-t(y) %*%y

相关系数用cor函数

2)层次聚类法

层次聚类法。先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最段距离。。。

r语言中使用hclust(d, method = "complete", members=NULL) 来进行层次聚类。

其中d为距离矩阵。

method表示类的合并方法,有:

single            最短距离法

complete        最长距离法

median        中间距离法

mcquitty        相似法

average        类平均法

centroid        重心法

ward            离差平方和法

?

1

2

3

4

5

6

7

8

> x <-c(1,2,6,8,11)      #试用一下

> dim(x) <-c(5,1)

> d <-dist(x)

> hc1 <-hclust(d,"single")

> plot(hc1)

> plot(hc1,hang=-1,type="tirangle")             #hang小于0时,树将从底部画起。

#type = c("rectangle", "triangle"),默认树形图是方形的。另一个是三角形。

#horiz  TRUE 表示竖着放,FALSE表示横着放。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

> z <-scan()

1: 1.0000.8460.8050.8590.4730.3980.3010.382

9: 0.8461.0000.8810.8260.3760.3260.2770.277

17: 0.8050.8811.0000.8010.3800.3190.2370.345

25: 0.8590.8260.8011.0000.4360.3290.3270.365

33: 0.4730.3760.3800.4361.0000.7620.7300.629

41: 0.3980.3260.3190.3290.7621.0000.5830.577

49: 0.3010.2770.2370.3270.7300.5831.0000.539

57: 0.3820.4150.3450.3650.6290.5770.5391.000

65: 

Read 64items

> names

[1] "shengao""shoubi""shangzhi""xiazhi""tizhong"

[6] "jingwei""xiongwei""xiongkuang"

> r <-matrix(z,nrow=8,dimnames=list(names,names))

> d <-as.dist(1-r)

> hc <-hclust(d)

> plot(hc)

然后可以用rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)来确定类的个数。 tree就是求出来的对象。k为分类的个数,h为类间距离的阈值。border是画出来的颜色,用来分类的。

?

1

2

3

> plot(hc)

> rect.hclust(hc,k=2)

> rect.hclust(hc,h=0.5)

result=cutree(model,k=3) 该函数可以用来提取每个样本的所属类别

二、动态聚类k-means

层次聚类,在类形成之后就不再改变。而且数据比较大的时候更占内存。

动态聚类,先抽几个点,把周围的点聚集起来。然后算每个类的重心或平均值什么的,以算出来的结果为分类点,不断的重复。直到分类的结果收敛为止。r语言中主要使用kmeans(x, centers, iter.max = 10, nstart = 1, algorithm  =c("Hartigan-Wong", "Lloyd","Forgy", "MacQueen"))来进行聚类。centers是初始类的个数或者初始类的中心。iter.max是最大迭代次数。nstart是当centers是数字的时候,随机集合的个数。algorithm是算法,默认是第一个。

?

使用knn包进行Kmean聚类分析

将数据集进行备份,将列newiris$Species置为空,将此数据集作为测试数据集

>newiris <- iris

>newiris$Species <- NULL

在数据集newiris上运行Kmean聚类分析, 将聚类结果保存在kc中。在kmean函数中,将需要生成聚类数设置为3

>(kc <- kmeans(newiris, 3)) 

K-means clustering with 3 clusters of sizes 38, 50, 62: K-means算法产生了3个聚类,大小分别为38,50,62. 

Cluster means: 每个聚类中各个列值生成的最终平均值

  Sepal.Length Sepal.Width Petal.Length Petal.Width

1     5.006000    3.428000     1.462000    0.246000

2     5.901613    2.748387     4.393548    1.433871

3     6.850000    3.073684     5.742105    2.071053

Clustering vector: 每行记录所属的聚类(2代表属于第二个聚类,1代表属于第一个聚类,3代表属于第三个聚类)

  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[73] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3

[109] 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3

[145] 3 3 2 3 3 2

Within cluster sum of squares by cluster: 每个聚类内部的距离平方和   

[1] 15.15100 39.82097 23.87947

(between_SS / total_SS =  88.4 %) 组间的距离平方和占了整体距离平方和的的88.4%,也就是说各个聚类间的距离做到了最大

Available components: 运行kmeans函数返回的对象所包含的各个组成部分

[1] "cluster"      "centers"      "totss"        "withinss"    

[5] "tot.withinss" "betweenss"    "size"  

("cluster"是一个整数向量,用于表示记录所属的聚类  

"centers"是一个矩阵,表示每聚类中各个变量的中心点

"totss"表示所生成聚类的总体距离平方和

"withinss"表示各个聚类组内的距离平方和

"tot.withinss"表示聚类组内的距离平方和总量

"betweenss"表示聚类组间的聚类平方和总量

"size"表示每个聚类组中成员的数量)

创建一个连续表,在三个聚类中分别统计各种花出现的次数

>table(iris$Species, kc$cluster)           

              1  2  3

  setosa      0 50  0

  versicolor  2  0 48

  virginica  36  0 14

根据最后的聚类结果画出散点图,数据为结果集中的列"Sepal.Length"和"Sepal.Width",颜色为用1,2,3表示的缺省颜色

>plot(newiris[c("Sepal.Length", "Sepal.Width")], col = kc$cluster)

在图上标出每个聚类的中心点

〉points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3, pch = 8, cex=2)

三、DBSCAN

动态聚类往往聚出来的类有点圆形或者椭圆形。基于密度扫描的算法能够解决这个问题。思路就是定一个距离半径,定最少有多少个点,然后把可以到达的点都连起来,判定为同类。在r中的实现

dbscan(data, eps, MinPts, scale, method, seeds, showplot, countmode)

其中eps是距离的半径,minpts是最少多少个点。 scale是否标准化(我猜) ,method 有三个值raw,dist,hybird,分别表示,数据是原始数据避免计算距离矩阵,数据就是距离矩阵,数据是原始数据但计算部分距离矩阵。showplot画不画图,0不画,1和2都画。countmode,可以填个向量,用来显示计算进度。用鸢尾花试一试

?

1

2

3

4

5

6

7

8

9

10

11

> install.packages("fpc", dependencies=T)

> library(fpc)

> newiris <-iris[1:4]

> model <-dbscan(newiris,1.5,5,scale=T,showplot=T,method="raw")# 画出来明显不对 把距离调小了一点

> model <-dbscan(newiris,0.5,5,scale=T,showplot=T,method="raw")

> model #还是不太理想……

dbscan Pts=150MinPts=5eps=0.5

        012

border 34518

seed    04053

total  344571

关于聚类分析的介绍,可参见本人之前的笔记: 聚类分析

案例一:世界银行样本数据集

创建世界银行的一个主要目标是对抗和消除贫困。在这个不断发展的世界中,世界银行持续的发展并精细地调整它的政策,已经帮助这个机构逐渐实现了消除贫困的目标。消除贫困的成果以下指标的改进衡量,这些指标包括健康、教育、卫生、基础设施以及其他需要用于改进穷人生活的服务。与此同时,发展成果必须保证以一种环保的、全社会的、经济可持续的方式达成。

准备工作

为了进行层次聚类,我们需要使用从世界银行收集的数据集。

第1步:收集和描述数据

该任务使用名为WBClust2013的数据集。该数据以标准格式存储在名为WBClust2013.csv的CSV格式的文件中。其有80行数据和14个变量。 点我获取数据

第一列Country为非数值型变量,其他列均为数值型变量。

第2步:探索数据

让我们探索数据并理解变量间的关系。我们通过导入名为WBClust2013.csv的CSV文件开始。存储数据到wbclust数据框中:

下一步输出wbclust数据框,head()函数返回wbclust数据框。wbclust数据框作为一个输入参数传入:

结果如下:

第3步:转换数据

中心化变量和创建z值是两个常见的用于归一化数据的数据分析手段。上面提到的数值型变量需要创建z值。scale()函数是一个通用的函数,其默认方法中心化并比例缩放一个数值化矩阵的列。数据框wbclust被传给该比例函数。只有数据框中数值化的变量会被缩放。结果存储在wbnorm数据框中。

结果如下:

所有的数据框都有rownames属性。rownames()函数用来获取或设置矩阵类变量的行名或列名。数据框wbclust以及第一列被传递给rownames()函数。

调用rownames(wbnorm)方法显示第一列的数值。结果如下:

第4步:训练并评估模型效果

下一步是训练模型。首先使用dist()函数计算距离矩阵。使用特定的距离度量方法计算数据矩阵行间的距离。使用的距离度量可以是欧式距离、最大距离、曼哈顿距离、堪培拉距离、二进制距离,或闵可夫斯基距离。这里的距离度量使用欧式距离。使用欧式距离计算两个向量间的距离为sqrt(sum((x_i-y_i)^2))。结果被存储在一个新的数据框dist1中。

下一步是使用Ward方法进行聚类。hclust()函数对一组不同的n个对象进行聚类分析。第一阶段,每个对象被指派给它自己的簇。之后每个阶段,算法迭代聚合两个最相似的簇。这个过程不断持续直到只剩一个簇。hclust()函数要求我们以距离矩阵的形式提供数据。dist1数据框被作为输入传入。默认使用全链接算法。此外还可以使用不同的聚集方法,包括ward.D、ward.D2、single、complete和average。

输入clust1命令可显示所使用的聚集方法,计算距离的方法,以及数据对象的数量。结果如下:

第5步:绘制模型

plot()函数是一个通用的绘制R语言对象的函数。这里plot()函数用来绘制系统树图:

结果如下:

rect.hclust()函数强调不同的簇,并在系统树图的枝干处绘制长方形。系统树图首先在某个等级上被剪切,之后在选定的枝干上绘制长方形。

clust1对象以及需要形成的簇的数量作为输入变量传入函数。

结果如下:

cuts()函数基于期望的簇数量或者切割高度将树中的元素切割到不同的簇中。这里,clust1对象以及需要形成的簇的数量作为输入变量传入函数。

结果如下:

得到每个簇的国家列表:

结果如下: