《R语言实战》自学笔记69-重抽样和自助法

Python018

《R语言实战》自学笔记69-重抽样和自助法,第1张

数据准备

许多实际情况中统计假设(假定观测数据抽样自正态分布或者其他性质较好的理论分布)并不一定满足,比如数据抽样于未知或混合分布、样本量过小、存在离群点、基于理论分布设计合适的统计检验过于复杂且数学上难以处理等情况,这时基于随机化和重抽样的统计方法就可派上用场。

置换检验的定义

置换检验(Permutation test),也称随机化检验或重随机化检验,是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。

置换检验的原理

1、提出原假设,比如XX处理后结果没有变化

2、计算统计量,如两组的均值之差,记作t0

3、将所有样本放在一起,然后随机排序进行分组,再计算其统计量t1

4、重复第3步骤,直至所有排序可能性都齐全(比如有A组有n样本,B组有m样本,则总重复次数相当于从n+m中随机抽取n个的次数),得到一系列的统计量(t1-tn)

5、最后将这些统计量按照从小到大排序,构成抽样分布,再看t0是否落在分布的置信区间内(如95%置信区间),这时候可计算一个P值(如果抽样总体1000次统计量中大于t0的有10个,则估计的P值为10/1000=0.01),落在置信区间外则拒绝原假设

6、如果第3步骤是将所有可能性都计算了的话,则是精确检验;如果只取了计算了部分组合,则是近似结果,这时一般用蒙特卡罗模拟(Monte Carlo simulation)的方法进行置换检验

7、置换检验和参数检验都计算了统计量,但是前者是跟置换观测数据后获得的经验分布进行比较,后者则是跟理论分布进行比较。

请牢记:置换检验都是使用伪随机数来从所有可能的排列组合中进行抽样(当做近似检验时)。因此,每次检验的结果都有所不同。

coin包提供了一个进行置换检验的一般性框架。通过该包,你可以回答如下问题。

响应值与组的分配独立吗?

两个数值变量独立吗?

两个类别型变量独立吗?

表12-2列出来的每个函数都是如下形式:

function_name(formula, data, distribution=)

其中:

 formula描述的是要检验变量间的关系。示例可参见表12-2;

 data是一个数据框;

 distribution指定经验分布在零假设条件下的形式,可能值有exact,asymptotic和

approximate。

若distribution = "exact",那么在零假设条件下,分布的计算是精确的(即依据所有可能的排列组合)。当然,也可以根据它的渐进分布(distribution = "asymptotic")或蒙特卡洛重抽样(distribution = "approxiamate(B = #)")来做近似计算,其中#指所需重复的次数。

distribution = "exact"当前仅可用于两样本问题。

传统t检验表明存在显著性差异(p <0.05),而精确检验却表明差异并不显著(p >0.072)。

第7章我用自己的数据进行了t检验,对比一下传统t检验和置换检验,结果如下:

两种检验方式下结果都是显著的

Wilcoxon-Mann-Whitney U检验

coin包规定所有的类别型变量都必须以因子形式编码。

wilcox.test()默认计算的也是精确分布。

K样本检验的置换检验

通过chisq_test()或cmh_test()函数,我们可用置换检验判断两类别型变量的独立性。 当数据可根据第三个类别型变量进行分层时,需要使用后一个函数。若变量都是有序型,可使用lbl_test()函数来检验是否存在线性趋势。

卡方独立性检验

卡方独立性检验的置换检验

你可能会有疑问,为什么需要把变量Improved从一个有序因子变成一个分类因子?(好问题!)这是因为,如果你用有序因子,coin()将会生成一个线性与线性趋势检验,而不是卡方检验。

结果解读:两种检验下p值都是小于0.05,说明Treatment和Improved之间相互不独立

自己数据的演示

结果解读:p值均为1,表明nitrogen和variety相互独立。

spearman_test()函数提供了两数值变量的独立性置换检验。

当处于不同组的观测已经被分配得当,或者使用了重复测量时,样本相关检验便可派上用场。

对于两配对组的置换检验,可使用wilcoxsign_test()函数;多于两组时,使用friedman_test()函数。

自己数据演示

lmPerm包可做线性模型的置换检验。比如lmp()和aovp()函数即lm()和aov()函数的修改版,能够进行置换检验,而非正态理论检验。

lmp()和aovp()函数的参数与lm()和aov()函数类似,只额外添加了perm =参数。

perm =选项的可选值有"Exact"、"Prob"或"SPR"。Exact根据所有可能的排列组合生成精确检验。Prob从所有可能的排列中不断抽样,直至估计的标准差在估计的p值0.1之下,判停准则由可选的Ca参数控制。SPR使用贯序概率比检验来判断何时停止抽样。注意,若观测数大于10,perm = "Exact"将自动默认转为perm = "Prob",因为精确检验只适用于小样本问题。

简单线性回归的置换检验

R语言实战的例子:

多项式回归的置换检验

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

当两种方法所得结果不一致时,你需要更加谨慎地审视数据,这很可能是因为违反了正态性假设或者存在离群点。

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

值得注意的是,当将aovp()应用到方差分析设计中时,它默认使用唯一平方和法(SAS也称为类型III平方和)。每种效应都会依据其他效应做相应调整。R中默认的参数化方差分析设计使用的是序贯平方和(SAS是类型I平方和)。每种效应依据模型中先出现的效应做相应调整。对于平衡设计,两种方法结果相同,但是对于每个单元格观测数不同的不平衡设计,两种方法结果则不同。不平衡性越大,结果分歧越大。若在aovp()函数中设定seqs = TRUE,可以生成你想要的序贯平方和。

你可能已经注意到,基于正态理论的检验与上面置换检验的结果非常接近。在这些问题中数据表现非常好,两种方法结果的一致性也验证了正态理论方法适用于上述示例。

当然,置换检验真正发挥功用的地方是处理非正态数据(如分布偏倚很大)、存在离群点、样本很小或无法做参数检验等情况。不过,如果初始样本对感兴趣的总体情况代表性很差,即使是置换检验也无法提高推断效果。

置换检验主要用于生成检验零假设的p值,它有助于回答“效应是否存在”这样的问题。不过,置换方法对于获取置信区间和估计测量精度是比较困难的。幸运的是,这正是自助法大显神通的地方。

所谓自助法,即从初始样本重复随机替换抽样,生成一个或一系列待检验统计量的经验分布。 无需假设一个特定的理论分布,便可生成统计量的置信区间,并能检验统计假设。

倘若你假设均值的样本分布不是正态分布,该怎么办呢?可使用自助法。

(1)从样本中随机选择10个观测,抽样后再放回。有些观测可能会被选择多次,有些可能一直都不会被选中。

(2)计算并记录样本均值。

(3)重复1和2一千次。

(4)将1000个样本均值从小到大排序。

(5)找出样本均值2.5%和97.5%的分位点。此时即初始位置和最末位置的第25个数,它们就限定了95%的置信区间。

boot包扩展了自助法和重抽样的相关用途。你可以对一个统计量(如中位数)或一个统计量向量(如一列回归系数)使用自助法。

一般来说,自助法有三个主要步骤。

(1)写一个能返回待研究统计量值的函数。如果只有单个统计量(如中位数),函数应该返回一个数值;如果有一列统计量(如一列回归系数),函数应该返回一个向量。

(2)为生成R中自助法所需的有效统计量重复数,使用boot()函数对上面所写的函数进行处理。

(3)使用boot.ci()函数获取第(2)步生成的统计量的置信区间。

主要的自助法函数是boot(),它的格式为:

bootobject <- boot(data=, statistic=, R=, ...)

参数见下表:

boot()函数调用统计量函数R次,每次都从整数1:nrow(data)中生成一列有放回的随机指标,这些指标被统计量函数用来选择样本。统计量将根据所选样本进行计算,结果存储在bootobject中。

你可以用bootobject t0和bootobject t来获取这些元素。

一旦生成了自助样本,可通过print()和plot()来检查结果。如果结果看起来还算合理, 使用boot.ci()函数获取统计量的置信区间。格式如下:

boot.ci(bootobject, conf=, type= )

type参数设定了获取置信区间的方法。perc方法(分位数)展示的是样本均值,bca将根据偏差对区间做简单调整。

回归的R平方值

1000次自助抽样

输出结果

结果可视化

95%的置信区间获取

回归系数向量函数

自助抽样1000次

获得车重和发动机排量95%的置信区间

置换检验和自助法并不是万能的,它们无法将烂数据转化为好数据。当初始样本对于总体情况的代表性不佳,或者样本量过小而无法准确地反映总体情况,这些方法也是爱莫能助。

参考资料:

孟德尔随机化(Mendelian randomization,MR)是以孟德尔独立分配定律为基础进行流行病学研究设计和数据分析,论证病因假说的一种方法。由基因型决定中间表型(暴露)的差异, 因果方向明确。

通过引入一个称之为工具变量的中间变量,来分析暴露因素和结局之间的因果关系

2.孟德尔随机化 vs RCT

孟德尔随机化的目的不是估计遗传效应的大小,而是估计暴露对结果的因果效应,所以与遗传变异相关的结局的平均变化幅度可能与干预措施导致的变化幅度不同

即使遗传变异与结果之间的关联程度很小,暴露的人群归因风险也不一定很低,因为暴露可能会比遗传变异解释更大的变化程度(例如,他汀类药物对低密度脂蛋白胆固醇水平的影响比低密度脂蛋白胆固醇水平与HMGCR基因变异的关联要大几倍,因此对后续结果的影响更大。)

孟德尔随机化要求大样本研究,变异发生率不能太小(最小等位基因频率MAF>5%)

3.工具变量

工具变量本身是一个计量经济学的概念,在孟德尔随机中,遗传变异被用作工具变量评估暴露对结局的因果效应,遗传变异满足工具变量的基本条件总结为(孟德尔随机化核心假设):

关联性假设——遗传变异与暴露有关

独立性假设——该遗传变异与暴露-结果关联的任何混杂因素均不相关

排他性假设——该遗传变异不会影响结果,除非可能通过与暴露的关联来实现

某研究组想了解非洲村落里的儿童补充维生素A和其死亡情况的关联,如果仅仅利用维生素A的服用情况和死亡情况去判断两者的关联,那极有可能会产生很大的偏倚,这是因为维生素A的服用情况和很多潜在因素相关,比如家庭的经济困难程度、家庭成员以及实验儿童的依从性,而这些潜在的因素也可能对儿童的身体健康有很大的影响。因此,在研究起始设计中,研究者便利用工具变量来解决这个问题。

在这里,工具变量Z是指服用维生素A这个任务,类似于随机抽签。这样的话工具变量Z便只和X服用维生素A这个行为相关,与除X以外的混杂因素不相关。

4.应用范围

行为因素与健康:基因变异引起各个倾向某行为,决定暴露状态。如ALDH2变异引起乙醛代谢障碍,改变饮酒行为,不同ALDH基因型代表饮酒量多少;

机体代谢产物与疾病关系,估计长期效应。代谢产物是基因表达的中间表型,酶的底物或者体外难测量的代谢指标:如LDL受体基因变异引起家族高胆固醇血症,比较不同基因型之间CHD发病情况的差异,可模拟血胆固醇水平和CHD发病关系;

子宫内环境暴露于子代健康关系。

5.发文分析

孟德尔随机化研究均发表在影响因子5分以上的期刊中

6.基础分析流程——TwoSampleMR

找工具变量,我们要的是基因作为工具变量,这些基因都是从别人的研究中挑出来的,所有的基因研究有个专门的库叫做genome wide association studies (GWAS)。我们需要做的就是从这个库中挑出来我们自己需要的和我们暴露相关的基因变量SNPs。

估计工具变量对结局的作用,工具变量对结局的作用也是从所有的研究中估计出来的整体效应,这样可以拒绝单个研究的偏倚。

合并多个SNP的效应量,这个效应量是我们得到暴露和结局因果效应的前提。

处理数据,用合并后的数据进行孟德尔随机化分析和相应的敏感性分析。

7.TwoSampleMR代码实现

安装相关R包

install.packages('devtools')

library('devtools')

install_github("MRCIEU/TwoSampleMR") #安装TwoSampleMR包

library('TwoSampleMR')

devtools::install_github("mrcieu/ieugwasr",force = TRUE)

获取MR base的表型ID,将结果保存为pheno_info.csv这个文件

ao <-available_outcomes(access_token=NULL) #获取GWAS数据,但近期Google限制,容易被墙

write.csv(ao,'pheno_info.csv',row.names=F)#将数据写入本地存储

查看pheno_info.csv文件,获取与暴露相关的工具变量的信息以及结局信息。这里选择暴露为obesity class 2 (ID = 91), 结局为 type 2 diabetes (ID = 1090)

exp_dat <- extract_instruments(outcomes=91,access_token=NULL)

obesity_exp_dat <- clump_data(exp_dat)

t2d_out_dat <- extract_outcome_data(snps=obesity_exp_dat$SNP, outcomes=1090, access_token=NULL)#提取结果信息

dat <- harmonise_data(exposure_dat =obesity_exp_dat, outcome_dat= t2d_out_dat)#数据合并,计算基因对结局的合并效应量

孟德尔随机化

results <- mr(dat)

OR值

OR <- generate_odds_ratios(results)

异质性检验

heterogeneity<- mr_heterogeneity(dat)

多效性检验

pleiotropy<- mr_pleiotropy_test(dat)

逐个剔除检验

leaveoneout<- mr_leaveoneout(dat)

散点图

mr_scatter_plot(results,dat)

森林图

results_single<- mr_singlesnp(dat)

mr_forest_plot(results_single)

漏斗图

mr_funnel_plot(results_single)

实例解析

2022年10月10日

西安交通大学生物医学信息与基因组学中心杨铁林教授团队在Nature Neuroscience (IF=28.771)期刊发表了题为:Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders 的文章。

研究背景

精神类疾病是一组脑功能紊乱的复杂疾病,会导致情感、认知和行为受到干扰和破坏。全球约有数亿人患有不同的精神障碍,被列为严重的公共卫生问题。近年来,脑影像学数据在脑疾病和功能的研究中受到广泛关注。以核磁共振成像为代表的脑影像技术,可用于活体无创定量评估人脑结构、连接和功能的特性。

虽然已有大量的观察性研究证据表明,精神疾病患者与健康正常人的脑影像表型存在显著差异,但脑影像学数据与精神障碍发病机制的因果关系尚不明确,探讨脑影像表型对精神疾病的因果作用具有重要的生物学和临床研究意义。

研究方法和结果

该研究基于大规模基因组数据,对常见的10种精神类疾病(包括注意力缺陷多动症、神经性厌食症、焦虑症、孤独症、双相情感障碍、抑郁症、强迫症、创伤后应激障碍、精神分裂症、抽动症)和587个关键的脑磁共振成像(MRI)结构表型进行了因果关系评估。

正向孟德尔随机化结果发现,脑白质纤维束的上额枕束的FA值和上放射冠的ICVF值、胼胝体内矢状层的MD值、第三脑室的体积等9个脑影像表型是精神分裂症、神经性厌食症和双相情感障碍的风险因素。进一步通过反向孟德尔随机化分析显示,发现精神分裂症的发生会导致额下回眶部的表面积和体积的增加。

该研究将基因组信息作为纽带,使脑影像表型和精神疾病联系起来,避免了观察性研究中由于药物或环境、生活方式等改变引起的样本检测数据偏差的缺点,确保了研究结果的稳健性。

本文第一大部分将介绍用R软件的meta分析数据包实现相关系数的Meta分析,第二大部分如何用R语言进行多变量的meta分析。

想获取R语言相关系数meta分析的程序模板的同学请在公众号(全哥的学习生涯)内回复“相关系数”即可。

meta数据包提供实现相关系数的Meta分析命令是:metacor(),这个命令通过加权的倒方差法运用相关系数和纳入的样本数来实现相关系数的随机效用模型和固定效用模型的合并,得到合并的相关系数及95%可信区间。具体的命令如下:

metacor(cor, n,studlab, data= NULL, subset=NULL, sm=.settings$smcor)

cor为每一个纳入研究的相关系数, n为样本量, studlab纳入研究的标签向量, data为相应的的数据集,sm选项为合并的方法,包括ZCOR和COR,其中ZCOR是合并之前先做Fisher Z变换,COR是直接合并。具体的步骤如下:

library(meta)

data<-read.csv(“C:/Users/86187/Desktop/data.csv”)

录入的数据见图1。

data<-metacor(r,n,data=m1,sm="ZCOR")

在这里合并的方法用的是Fisher Z变换。对样本的相关系数做Fisher Z变换是因为Fisher Z变换可以使样本的相关系数的分布正态分布,尤其是在样本量较小的时候,这样便于进一步估计。一般来说,不管是随机还是固定效应都会先对相关系数做Fisher Z变换。只有很少的情况下才直接用相关系数直接来做分析,比如样本量很大的时候,如果直接合并相关系数,当相关系数值接近1的时候,小样本量研究得到的权重会非常大。因此在这里推荐合并的方法都用(ZCOR)Fisher Z变换。Meta分析的结果见图2。

结果显示,异质性检验Q=6.16, P=0.0461, I2=67.5,可以认为有统计学意义上的异质性。选用随机效用模型,COR=0.8427, 95%CI: 0.6264-0.9385, z=4.8724, P<0.0001, 有统计学差异。

具体的命令如下:

forest(a)

从森林图中,非常简单和直观地看到Meta分析的统计结果,见图3

关于这两个方法的介绍请看我之前公众号(全哥的学习生涯)的推送文章(如何用R语言进行meta分析,详细教程一)的内容。敏感性分析和剪补法的结果图分别见图4和图5。

通常Meta分析假定效应量来自于独立的研究,因此统计结果也是独立的。然而,许多研究不能满足独立性的假设,比如多个治疗组与一个共同的对照组比较的研究和多个结局变量的研究就可能产生效应量之间的相关。多变量meta 分析(multivariate meta⁃analysis)作为单变量meta分析的一个拓展,可合并估计多个研究的多个相关参数,这些参数可以是多个结局或多组间的比较。当同一总体中的测量结局相关时,分别对每个结局进行Meta 分析,测量结局之间的相关结构就可能被忽略。多变量Meta分析在随机对照研究中有多种应用,最简单的是在临床试验中把每个组的结局分别处理,其他的应用还有同时探索两个临床结局的治疗效应,或同时探索成本效益的治疗效应,比较多个治疗的联合试验,以及在观察性研究中评估暴露量与疾病之间的相关性,还有在诊断试验和网络干预中的应用。

本次数据来源请见文末的参考文献,主要研究肝硬化的非手术治疗方式预防其出血的危险性,以初次出血的例数为指标,其中三个组分别是:β⁃受体阻滞剂(A),硬化疗法(B),对照组(C),目的是评价这三种非手术治疗方式预防肝硬化出血的效果。,Bled表示初次出血的例数,Total表示干预组的总例数。YAC和YBC分别表示A、B两组相对于C组估计的ln(OR),即干预组的肝硬化初次出血的危险性是对照组的倍数的自然对数;SAA、SBB和SAB则表示其对应方差及两者之间的协方差。对于包含0的研究(研究10和研究20),在每个组增加0.5个初次出血的例数。整理后见表1。

随后安装调用程序包,并进行加载:

install.packages(‘mvmeta’)

library(mvmeta)。

随后将肝硬化初次出血整理后的数据集data(至少包含YAC、YBC、SAA、SAB、SBB变量)保存为csv格式,然后利用下面命令将其导入R语言。

mvmeta 的语句:mvmeta(formula,S,data,subset,method=“reml”,bscov=“unstr”,model=TRUE,contrasts=NULL,offset,na.action,control=list())

其中formula 表示结局变量名称(即YAC、YBC);S 表示研究内(协)方差(即SAA、SAB、SBB);data 表示数据集名称;method 表示所用的估计方法:固定效应模型时选择FIXED;随机效应模型时则选择

限制性最大似然估计(REML)、最大似然估计(ML)、矩估计(MM)、方差成分法(VC)的其中之一,默认为REML。由输出结果中Q 检验的P 值和I2 统计量来判断异质性以及选择何种效应模型。

mvmeta包中主要提供了多变量Meta分析与多变量的Meta 回归,另外也提供了单变量的Meta 分析和Meta 回归。但对于后两者,在R 语言中的metafor、meta、rmeta 及metalik 等包提供了更多、更详尽和有效的功能。多变量Meta 程序为library(mvmeta),调用mvmeta软件包。

model<-mvmeta(cbind(Ya,Yb),S=S,data=cirrhosis)

model <- mvmeta(cbind(Ya,Yb)~X,S=S,data=cirrhosis),此处X代表协变量。

model<-mvmeta(Y,S=S,data=cirrhosis),此处Y为单变量的效应量,S为效应量方差。

model<-mvmeta(Y~X,S=S,data=cirrhosis),此处X代表协变量。

运行以上程序后,最后将结果输出。

单变量和多变量Meta分析都是采用ln(OR)值做分析。单变量Meta分析时YAC和YBC的Q检验P 值均小于0.05,I2统计量分别为57.7%和77.8%。多变量Meta分析Q检验P<0.05,I2统计量为73.9%。可知两种Meta 分析均存在异质性,都用随机效应模型。估计方法选择默认的REML法。

表2 是单变量Meta 分析结果,可得:AC 与BC的OR 值及95%可信区间分别为0.5281(0.2802,0.9955)、0.5406(0.3095,0.9443),表明初次出血的危险性由于干预而降低,即β⁃受体阻滞剂、硬化疗法可以预防肝硬化出血,两者为保护因素。

多变量Meta 分析的结果:YAC 为-0.6755(-1.3073,-0.0438),YBC 为-0.5938(-1.1444,-0.043 2),研究间相关系数为0.436 5(见表3),A组与B组的治疗效果呈正相关。OR 值及95%可信区间分别为0.508 9(0.2705,0.9571)、0.5522(0.318 4,0.957 7),多变量Meta 分析的结果说明β⁃受体阻滞剂预防肝硬化出血的效果是最好,其次是硬化疗法。OR 值的95%可信区间不包含1,上下限均小于1,说明两种疗法与对照组比较的初次出血危险性均小于1,差异有统计学意义。

最后,如果屏幕前的你对R语言学习还有什么问题或者看法,可以在我的公众号(全哥的学习生涯)给我留言,公众号里也有我的个人联系方式,我也希望可以结合更多志同道合的伙伴。

感谢你的阅读。