r语言abind函数怎么用

Python08

r语言abind函数怎么用,第1张

abind函数用于将多个数组拼接在一起,生成一个新的数组。它的语法格式为:abind(x, along, ...),其中x是一个或多个数组,along是指定拼接的维度,可以是1或者2。

例如:

x1 <- array(1:4, dim=c(2,2))

x2 <- array(5:8, dim=c(2,2))

abind(x1, x2, along=2)

结果为:

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

数据准备

向一个数值型向量中添加一个字符串会将此向量中的所有元素转换为字符型。

is.datatype()用于判断数据类型,返回值为TRUE或FALSE,常见类型包括数值型numeric、字符型character、逻辑型logical、数据框data.frame等。 as.datatype()可将数据类型进行转化。

查看数据类型:mode(), class(), typeof(), storage.mode()

逻辑值转换成数值时,TRUE转换成1,FALSE转换成0。

函数:order(x,decreasing=F,na.last=NA)

x是要排序的数据,可以是数据框也可以是向量,decreasing=F是默认升序,在排序变量前加一个减号可得到降序排序结果,na.last =NA表示将NA元素移到最后,否则,将NA放在第一个。

函数:cbind(A, B) ,不需要指定一个公共索引对数据框进行合并。

cbind:根据列进行合并,即叠加所有列,m列的矩阵与n列的矩阵cbind()最后变成m+n列,合并前提:cbind(a, c)中矩阵a、c的行数必需相符。

merge(A, B) :横向合并两个数据框(数据集),在多数情况下,两个数据框是通过一个或多个共有变量进行联结的(即一种内联结,inner join)。

rbind(A, B) :纵向合并两个数据框(数据集),两个数据框必须拥有相同的变量,不过它们的顺序不必一定相同。

rbind:根据行进行合并,就是行的叠加,m行的矩阵与n行的矩阵rbind()最后变成m+n行,合并前提:rbind(a, c)中矩阵a、c的列数必需相符。

函数:dataframe[row indices, column indices] dataframe为要索引的数据框,[]中,前面的是行,后面是列。

在某一列或行的下标之前加一个减号(-)就会剔除那一列或行。

subset(x, subset, select, drop = FALSE, ...)

x是要进行操作的数据框,subset是对数据的某些字段进行操作,select是选取要显示的字段。

sample(x, size, replace = FALSE, prob = NULL)

x表示所要抽样数据,size表示抽样元素个数,replace为T表示采取有重复的抽样,prob用于指定抽样的概率。

参考资料:

1. 判断存在:一个元素是不是在向量中用 a%in%b

>a="TT"

>b=c("AA","AT","TT")

>a %in% b

[1] TRUE

2. 判断某一元素这向量中的索引(第几个位置): index.TT=which(b==”TT”)

>index.TT=which(b=="TT")#index.TT是想知道的索引号,which是判断函数,b是想知道的元素所在的向量

>index.TT

[1] 3

3. 相当于 python 中的字典, names 函数

>b

[1] "AA" "AT" "TT"

>names(b)=c("geno1","geno2","geno3")#geno mean genotype

>names(b)

[1] "geno1" "geno2" "geno3"

>names(b)[1]

[1] "geno1"

>names(b)[1]="test"

>names(b)

[1] "test""geno2" "geno3"

>names(b)=NULL

>b

[1] "AA" "AT"

>b["geno2"]

"AT"

pop_name=c(“CEU”,"YRI")

names(pop_name)=c(1,2)

names(pop_name[1])=1

4. 去除某一元素: b[-index.nu]

#想去除元素”TT”,如果你不知道是第几个索引,可以先判断索引,再删除。

>b=c("AA","AT","TT")

>names(b)=c("geno1","geno2","geno3")

>index.TT=which(b=="TT")

>b=b[-index.TT]

>b

geno1 geno2

"AA""AT"

5. 相当于 Python 中的 set() 函数 和 count() 函数: unique() , table()

>b=c("TT","AT","AT","TT","AA")

>unique(b)#即相当于去除所有的重复,只保留一个

[1] "TT" "AT" "AA"

>table(b)#以元素为name,统计各元素的个数

b

AA AT TT

122

6. 字符串的分割: strsplit()

>test="AA"

>strsplit(test)

错误于strsplit(test) :缺少参数"split",也没有缺省值

>strsplit(test,split='')

[[1]]

[1] "A" "A"

>test=strsplit(test,split='')[[1]]

>test

[1] "A" "A"

7. 文本文档的写入: write.table()

write.table( res.matrix,file=new.file,sep='\t',quote=F,row.names=F,col.names=F,append=T)#quote=F去掉引号后写入,row.names=F去掉行的名字写入,否则会把名字写进去

##写入数据时候最好把数据存储成一个matrix然后直接写。要是每行每行写的话要注意数据的格式了。先建立一个空的matrix,见8,然后通过rbind或者cbind叠加上去。

方法一:

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=c(a,b)

}

write.table(a,file=”test.txt”)#你会发现结果是

AA

TT

CC

….

##而且还有行和列的名字,因为没有设置参数。因为对于c向量来说,写的话默认是竖着写的,每个元素占一行。所以比较方便的就是rbind

方法二:

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=rbind(a,b)

}

write.table(a,file=”test.txt”,quote=F,row.names=F,col.names=F)#你会发现结果是

AA TT CC

AA TT CC

AA TT CC

##原因是rbind把最总结果当做矩阵了。对于R数据的写入最好能生成最后的矩阵再写入。但是西面的梅一行写一次和方法二的效果是想通的,但是要用到append参数。

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=rbind(a,b)

write.table(a,file=”test.txt”,quote=F,row.names=F,col.names=F,append=T)

}

8. 建立一个空的 matrix :

res.matrix <- matrix( ,nrow=0,ncol=6 )##这样就建立了一个0行6列的空matrix了。

9. 如何将 R 运行结果输出到文件

>x=read.table("F:/my/work/chengxu/PValue/pc2jieguo/pc2302.txt")

>z=t(x)

>ks.test(y,z)

Two-sample Kolmogorov-Smirnov test

data:y and z

D = 0.207, p-value <2.2e-16

alternative hypothesis: two-sided

如上面运行结果,我想将p-value <2.2e-16自动保存到一个文件中,如何用R程序实现,谢谢!

sink("output.txt")

print(ks.test(y,z)$p.value)

sink()

http://cos.name/cn/topic/16300

10 降序排列:

>a=c(1,1.2,0.1,4,5,-0.1)

>a=sort(a,decreasing=T)

>a

[1]5.04.01.21.00.1 -0.1

11. 取前1%的数

>a=c(1:10,4:20,1:100,1:1000)

>a=sort(a,decreasing=T)#先降序

>sig=a[round(length(a)*0.01)]

>sig

[1] 990

12.在shell中直接执行R脚本

R CMD BATCH --argstest.R

13. R中高级作图的方法

http://qizhi502.blog.163.com/blog/static/11497002520120611451736/

14:设置字体类型:

par(family='Times New Roman')

15:控制图形四周的空白大小

par(mfrow=c(3,1),mar=c(0,0,0,0))

其中mar是四周的间距,分别为x,y上下的距离

16控制作图区域的大小layout

layout(c(1,2,3),height=c(1,1,0.5))

分成竖着三份, 其中三份比列依次为(高度依次为2:2:1)

17保留两位小数

round(0.123,digits=2)

18 在原有图的基础上画图:

par(fig=c(0.1,0.5,0.43,0.65), new=TRUE)

19 只显示y轴

plot(1:10,1:10,axes=F)

axis(2,at.....)

20 调节刻度方向 las

plot(1:10,1:10,las=1)

21 屏幕分割

layout(matrix(1:16,4,4))###竖着plot

par(mfrow=c(4,4))##横着plot

22.逻辑表示或者

xor为异或,两值不等为真,两值相等为假。例:xor(0, 1)

23. 从向量中随机取几个数sample

sample(rep(1:1000),10)

23 字符串转换成小数浮点型

as.numeric("0.123")

24. 读取不规范的文本

f=readLines(afile,n=1)#n表示读几行

f=strsplit(f,'\t')##分割

f[1][[1]]##第一行

f[1][[1]][1]##第一行 第一个字符串

25. write 写入文件

write(afile, "a\tb\t",append=T) #沿着每行一次 写入

26. 不需要循环,这直接对matrix没行或者每列进行筛选操作apply()

apply(data,col2 or row1, max>0)

27.保留2位小数

a=2.300

a=as.numeric(sprintf(“%.3f”,a))

28。调出假设检验的p value

t.test(data1,data2)$p.value