R语言ggcorrplot包绘制相关性热图

Python018

R语言ggcorrplot包绘制相关性热图,第1张

热图是科研论文中一种常见的可视化手段,而在转录组研究领域,我们常常需要分析一些基因与基因之间的相关性,来判断生物样本中是否存在共表达情况,以及共表达基因模块。除了基因集之间,其他方向,比如免疫细胞群体之间相关性,样本的相关性,也常常用相关性热图的形式进行展示。总而言之,往大了说,任何表征相关性的数值都可以用相关性热图来进行绘制。

常规热图示例

我们先来看看下面这张图,这是一篇发表在  PLoS Medicine  (IF = 11.048) 上的文章图,来看 22 种免疫细胞群体之间的相关性,其中红色的颜色代表正相关,蓝色代表负相关。每一格的数字代表相关系数。这是一种经常会用到的图形,不同于常规热图。常规热图中的每行代表一个观察值,每列代表一个样本,而我们在本次教程中,将为大家带来更高级,也更美观的相关性热图。

相关性热图

Step 1: R 包安装和数据输入

首先是安装必须 R 包,在这里我们需要用到 ggcorplot 和 ggthemes 这两个R包。

然后我们读入R表达谱数据。

数据一共有 10 个样本和 20 个基因,每一行为一个基因,每一列为一个样本,我们需要看这 20 个基因在这 10 个样本中的共表达情况,也就是基因和基因之间的相关性。

Step 2: 相关性计算

为了表示基因与基因相关性,我们除了要计算它们的相关性系数,还需要计算体现其显著性的  P  值。

计算相关性系数并显示前 6 个基因之间的相关性。相关性系数大于 0 为正相关,小于 0 为负相关。

计算基因与基因之间的相关性  P  值,其中  P  小于 0.05 认为这两个基因之间相关性是显著的。

Step 3: 相关性热图绘制

使用 ggcorplot 绘制基因与基因之间相关性热图。

Step 4: 初级美化 Circle

美化第一步,我们将矩形热图改成圆形

是不是大家瞬间觉得眼前一亮?

Step 5: 中级美化 Clustering

虽然有所美观,但是,这样上面一张相关性热图还是存在问题的,大家是否发现热图中的点非常乱,让人没办法捕捉到其中的规律,不容易让人一眼抓住重点。所以,我们要对基因进行聚类。

这张热图,已经是非常漂亮了,放在文章中绝对让人眼睛一亮,正相关负相关基因清清楚楚。

Step 6: 高级美化 Triangle

当然,我们还可以进一步改善。因为相关性之间其实是有对称在的,左上角和右下角的图其实是一样的,这样绘制比较占版面。只绘制左上角的热图,可以让我们的图看起来没有那么臃肿。

Step 7: 终级美化 Label

那么如何显示相关性强弱呢,虽然颜色和点的大小可以看出来,但是毕竟没有那么直观。所以我们将相关性系数加上,并更改热图颜色。

这样基因相关性热图就相当完美了,可以直接放在文章图中,而且比 PLoS Medicine 那篇文章看起来更漂亮呢。

Step 8: 究级美化 Omit

不过,如果我们想知道哪些基因显著性是小于 0.05 的呢,虽然颜色和点的大小以及相关性系数可以看出来,但是如果被老板们问起,模棱两可的回答,可是相当危险的哦。所以,我们把显著性p值加上,并且直接隐藏  P  小于 0.05 的基因。

1.  R语言自带函数cor(data, method=" ")可以快速计算出相关系数 ,数据类型:data.frame

 如data.frame为:zz, 绘图如下:

a. single protein:线性回归画法

1. ggplot(zz,aes(x=a, y=HDL))+

   geom_point(alpha=1,colour="#FFA54F")+

   geom_smooth(method = lm,colour="#8B658B")+

   #scale_color_brewer(palette = "Set1")+

   theme_bw()+

   labs(x="Ferritin",y="HDL.C",title="Pearson’s correlation test of ferritin and HDL.C")+

   annotate("text", x = 1000, y = 2.5, label = "r = -0.51",colour="black",size=4)

2. library(ggstatsplot)

 ggscatterstats(data = alldata,

               y = TRANSFUSION.UNIT,

                x = NPTXR,

                centrality.para = "mean",  #"mean" or "median"                         

               margins = "both",                                       

                xfill = "#D8BFD8",

                yfill = "#EEDD82",

                #line.size= ,

                line.color="#8B6969",

               point.color="#2F4F4F",

                marginal.size=4,

               marginal.type = "density", # "histogram", "boxplot", "density", "violin", "densigram")

                title = "Relationship between TRANSFUSION.UNIT and NPTXR")

b. ggcorrplot, 全部蛋白 global correlation map 画法

ggcorrplot(cor(alldata))

2.  summary(lm(y~x),method=" ") %>%.[["coefficients"]]   正规线性回归

     (其实就是:a<-lm(y~x1+x2+...,data)

      plot(summary(lm(y~x),method=" ")) #绘图

3.  ggcor部分数据绘图:  数据类型为data.frame,纵坐标为各指标or各蛋白,行为观测值。

data <- fortify_cor(alldata[,10:11],alldata,cluster.type = "col")

ggcor<-ggcor(data,label_size=0.5) +

  geom_colour()+

  theme(axis.text.x = element_text(colour = "black",size = 4.7),

                                                        axis.text.y=element_text(size=5.5),

                                                        axis.ticks=element_blank())+

  geom_num(aes(num=r),colour="black",size=1.5)

4. corrr包画法

datasets::mtcars %>%

  correlate() %>%

  focus(-cyl, -vs, mirror = TRUE) %>%

  rearrange() %>%

  network_plot(min_cor = .2)