R语言中的with函数什么意思?

Python020

R语言中的with函数什么意思?,第1张

height.weight是数据框(data.frame),Height应该是height.weight中的一个变量

with就是把所有操作都限制在数据框上。

比如说你手上有两组数据,asian是亚洲人的身体参数:体重 身高 视力等等,european是欧洲人的

那么with(asian,height) 就是调去asian数据中的height

with(european,height) 就是调用european数据中的height

数据框(data.frame)是R中最常处理的数据结构。

函数:data.frame(col1,col2,col3,....,row.name=NULL, check.rows = FALSE, check.names=TRUE, stringsAsFactors = default.stringsAsFactors())

其中的列向量col1, col2, col3,...可为任何类型(如字符型、数值型或逻辑型),每一列的名称可由函数names指定;

row.name用于指定各行(样本)的名称,默认没有名称,使用从1开始自增的序列来标识每一行;

check.rows用于用来检查行的名称和数量是否一致,默认为FALSE;

check.names来检查变量(列)的名称是否唯一且符合语法,默认为TRUE;

stringsAsFactors用来描述是否将字符型向量自动转换为因子,默认转换,若不改变的话使用stringsAsFactors = FALSE来指定即可。

每一列数据的模式必须唯一,不过你却可以将多个模式的不同列放到一起组成数据框。

先构建向量,再组成数据框。

直接用data.frame函数构建数据框。

R语言的下标索引是从1开始的,且下标索引为负数的话表示删除某个元素。

[] 可进行索引,括号内对应的是[行下标, 列下标]。

[1] 1 2 3 4 5 6 7 8

[1] "four"

[1] 1 2 3 4 5 6 7 8

[1] "four"

[1] 1 2 3 4 5 6 7 8

[1] "one" "two" "three"

attach、detach和with()

函数attach()可将数据框添加到R的搜索路径中。

函数detach()将数据框从搜索路径中移除。

函数attach()和detach()最好在你分析一个单独的数据框,并且不太可能有多个同名对象时使用。

with()就是把所有操作都限制在数据框上。

The following objects are masked by .GlobalEnv:

[1] 1 2 3 4 5 6 7 8

[1] "n1" "n2" "n3" "n4" "n5" "n6" "n7" "n8"

[1] 8

[1] 3

[1] 8

[1] "name""values" "values2"

[1] "r1" "r2" "r3" "r4" "r5" "r6" "r7" "r8"

[1] 8 3

[1] "data.frame"

[1] "numeric"

[1] "character"

Length:8 Min. :1.00 Min. :1.00

Class :character 1st Qu.:2.75 1st Qu.:2.75

Mode :character Median :4.50 Median :4.50

Mean :4.50 Mean :4.50

3rd Qu.:6.25 3rd Qu.:6.25

Max. :8.00 Max. :8.00

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2016-08-23 05:17 砍柴问樵夫

数据缺失有多种原因,而大部分统计方法都假定处理的是完整矩阵、向量和数据框。

缺失数据的分类:

完全随机缺失 :若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。

随机缺失: 若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。

非随机缺失: 若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NMAR) 。

处理缺失数据的方法有很多,但哪种最适合你,需要在实践中检验。

下面一副图形展示处理缺失数据的方法:

处理数据缺失的一般步骤:

1、识别缺失数据

2、检测导致数据缺失的原因

3、删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1、识别缺失数据:

R语言中, NA 代表缺失值, NaN 代表不可能值, Inf 和 -Inf 代表正无穷和负无穷。

在这里,推荐使用 is.na , is.nan , is.finite , is.infinite 4个函数去处理。

x<-c(2,NA,0/0,5/0)

#判断缺失值

is.na(x)

#判断不可能值

is.nan(x)

#判断无穷值

is.infinite(x)

#判断正常值

is.finite(x)

推荐一个函数: complete.case() 可用来识别矩阵或数据框中没有缺失值的行!

展示出数据中缺失的行 (数据集sleep来自包VIM)

sleep[!complete.cases(sleep),]

判断数据集中有多少缺失

针对复杂的数据集,怎么更好的探索数据缺失情况呢?

mice包 中的 md.pattern() 函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格。

备注:0表示变量的列中没有缺失,1则表示有缺失值。

第一行给出了没有缺失值的数目(共多少行)。

第一列表示各缺失值的模式。

最后一行给出了每个变量的缺失值数目。

最后一列给出了变量的数目(这些变量存在缺失值)。

在这个数据集中,总共有38个数据缺失。

图形化展示缺失数据:

aggr(sleep,prop=F,numbers=T)

matrixplot(sleep)

浅色表示值小,深色表示值大,默认缺失值为红色。

marginmatrix(sleep)

上述变量太多,我们可以选出部分变量展示:

x <- sleep[, 1:5]

x[,c(1,2,4)] <- log10(x[,c(1,2,4)])

marginmatrix(x)

为了更清晰,可以进行成对展示:

marginplot(sleep[c("Gest","Dream")])

在这里(左下角)可以看到,Dream和Gest分别缺失12和4个数据。

左边的红色箱线图展示的是在Gest值缺失的情况下Dream的分布,而蓝色箱线图展示的Gest值不缺失的情况下Dream的分布。同样的,Gest箱线图在底部。

2、缺失值数据的处理

行删除法: 数据集中含有缺失值的行都会被删除,一般假定缺失数据是完全随机产生的,并且缺失值只是很少一部分,对结果不会造成大的影响。

即:要有足够的样本量,并且删除缺失值后不会有大的偏差!

行删除的函数有 na.omit() 和 complete.case()

newdata<-na.omit(sleep)

sum(is.na(newdata))

newdata<-sleep[complete.cases(sleep),]

sum(is.na(newdata))

均值/中位数等填充: 这种方法简单粗暴,如果填充值对结果影响不怎么大,这种方法倒是可以接受,并且有可能会产生令人满意的结果。

方法1:

newdata<-sleep

mean(newdata$Dream,na.rm = T)

newdata[is.na(newdata$Dream),"Dream"]<-1.972

方法2:

Hmisc包更加简单,可以插补均值、中位数等,你也可以插补指定值。

library(Hmisc)

impute(newdata$Dream,mean)

impute(newdata$Dream,median)

impute(newdata$Dream,2)

mice包插补缺失数据: 链式方程多元插值,首先利用mice函数建模再用complete函数生成完整数据。

下图展示mice包的操作过程:

mice():从一个含缺失值的数据框开始,返回一个包含多个完整数据集对象(默认可以模拟参数5个完整的数据集)

with():可依次对每个完整数据集应用统计建模

pool():将with()生成的单独结果整合到一起

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

在这里,m是默认值5,指插补数据集的数量

插补方法是pmm:预测均值匹配,可以用methods(mice)查看其他方法

maxit指迭代次数,seed指设定种子数(和set.seed同义)

概述插补后的数据:

summary(data)

在这上面可以看到数据集中变量的观测值缺失情况,每个变量的插补方法, VisitSequence 从左至右展示了插补的变量, 预测变量矩阵 (PredictorMatrix)展示了进行插补过程的含有缺失数据的变量,它们利用了数据集中其他变量的信息。(在矩阵中,行代表插补变量,列代表为插补提供信息的变量,1

和0分别表示使用和未使用。)

查看整体插补的数据:

data$imp

查看具体变量的插补数据:

data$imp$Dream

最后,最重要的是生成一个完整的数据集

completedata<-complete(data)

判断还有没有缺失值,如果没有,结果返回FLASE

anyNA(completedata)

针对以上插补结果,我们可以查看原始数据和插补后的数据的分布情况

library(lattice)

xyplot(data,Dream~NonD+Sleep+Span+Gest,pch=21)

图上,插补值是洋红点呈现出的形状,观测值是蓝色点。

densityplot(data)

图上,洋红线是每个插补数据集的数据密度曲线,蓝色是观测值数据的密度曲线。

stripplot(data, pch = 21)

上图中,0代表原始数据,1-5代表5次插补的数据,洋红色的点代表插补值。

下面我们分析对数据拟合一个线性模型:

完整数据:

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

model<-with(data,lm(Dream~Span+Gest))

pooled<-pool(model)

summary(pooled)

fim指的是各个变量缺失信息的比例,lambda指的是每个变量对缺失数据的贡献大小

缺失数据(在运行中,自动会行删除):

lm.fit <- lm(Dream~Span+Gest, data = sleep,na.action=na.omit)

summary(lm.fit)

完整数据集和缺失数据集进行线性回归后,参数估计和P值基本一直。 缺失值是完全随机产生的 。如果缺失比重比较大的话,就不适合使用行删除法,建议使用多重插补法。

kNN插值法: knnImputation函数使用k近邻方法来填充缺失值。对于需要插值的记录,基于欧氏距离计算k个和它最近的观测。接着将这k个近邻的数据利用距离逆加权算出填充值,最后用该值替代缺失值。

library(DMwR)

newdata<-sleep

knnOutput <- knnImputation(newdata)

anyNA(knnOutput)

head(knnOutput)