python svm 怎么训练模型

Python010

python svm 怎么训练模型,第1张

支持向量机SVM(Support Vector Machine)是有监督的分类预测模型,本篇文章使用机器学习库scikit-learn中的手写数字数据集介绍使用Python对SVM模型进行训练并对手写数字进行识别的过程。

准备工作

手写数字识别的原理是将数字的图片分割为8X8的灰度值矩阵,将这64个灰度值作为每个数字的训练集对模型进行训练。手写数字所对应的真实数字作为分类结果。在机器学习sklearn库中已经包含了不同数字的8X8灰度值矩阵,因此我们首先导入sklearn库自带的datasets数据集。然后是交叉验证库,SVM分类算法库,绘制图表库等。

12345678910#导入自带数据集from sklearn import datasets#导入交叉验证库from sklearn import cross_validation#导入SVM分类算法库from sklearn import svm#导入图表库import matplotlib.pyplot as plt#生成预测结果准确率的混淆矩阵from sklearn import metrics

读取并查看数字矩阵

从sklearn库自带的datasets数据集中读取数字的8X8矩阵信息并赋值给digits。

12#读取自带数据集并赋值给digitsdigits = datasets.load_digits()

查看其中的数字9可以发现,手写的数字9以64个灰度值保存。从下面的8×8矩阵中很难看出这是数字9。

12#查看数据集中数字9的矩阵digits.data[9]

以灰度值的方式输出手写数字9的图像,可以看出个大概轮廓。这就是经过切割并以灰度保存的手写数字9。它所对应的64个灰度值就是模型的训练集,而真实的数字9是目标分类。我们的模型所要做的就是在已知64个灰度值与每个数字对应关系的情况下,通过对模型进行训练来对新的手写数字对应的真实数字进行分类。

1234#绘制图表查看数据集中数字9的图像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()

设置模型的特征X和预测目标Y

查看数据集中的分类目标,可以看到一共有10个分类,分布为0-9。我们将这个分类目标赋值给Y,作为模型的预测目标。

12#数据集中的目标分类digits.target 12#将数据集中的目标赋给YY=digits.target

手写数字的64个灰度值作为特征赋值给X,这里需要说明的是64个灰度值是以8×8矩阵的形式保持的,因此我们需要使用reshape函数重新调整矩阵的行列数。这里也就是将8×8的两维数据转换为64×1的一维数据。

123#使用reshape函数对矩阵进行转换,并赋值给Xn_samples = len(digits.images)X = digits.images.reshape((n_samples, 64))

查看特征值X和预测目标Y的行数,共有1797行,也就是说数据集中共有1797个手写数字的图像,64列是经过我们转化后的灰度值。

12#查看X和Y的行数X.shape,Y.shape

将数据分割为训练集和测试集

将1797个手写数字的灰度值采用随机抽样的方法分割为训练集和测试集,其中训练集为60%,测试集为40%。

12#随机抽取生成训练集和测试集,其中训练集的比例为60%,测试集40%X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, Y, test_size=0.4, random_state=0)

查看分割后的测试集数据,共有1078条数据。这些数据将用来训练SVM模型。

12#查看训练集的行数X_train.shape,y_train.shape

对SVM模型进行训练

将训练集数据X_train和y_train代入到SVM模型中,对模型进行训练。下面是具体的代码和结果。

12#生成SVM分类模型clf = svm.SVC(gamma=0.001) 12#使用训练集对svm分类模型进行训练clf.fit(X_train, y_train)

使用测试集测对模型进行测试

使用测试集数据X_test和y_test对训练后的SVM模型进行检验,模型对手写数字分类的准确率为99.3%。这是非常高的准确率。那么是否真的这么靠谱吗?下面我们来单独测试下。

12#使用测试集衡量分类模型准确率clf.score(X_test, y_test)

我们使用测试集的特征X,也就是每个手写数字的64个灰度值代入到模型中,让SVM模型进行分类。

12#对测试集数据进行预测predicted=clf.predict(X_test)

然后查看前20个手写数字的分类结果,也就是手写数字所对应的真实数字。下面是具体的分类结果。

12#查看前20个测试集的预测结果predicted[:20]

再查看训练集中前20个分类结果,也就是真实数字的情况,并将之前的分类结果与测试集的真实结果进行对比。

12#查看测试集中的真实结果expected=y_test

以下是测试集中前20个真实数字的结果,与前面SVM模型的分类结果对比,前20个结果是一致的。

12#查看测试集中前20个真实结果expected[:20]

使用混淆矩阵来看下SVM模型对所有测试集数据的预测与真实结果的准确率情况,下面是一个10X10的矩阵,左上角第一行第一个数字60表示实际为0,SVM模型也预测为0的个数,第一行第二个数字表示实际为0,SVM模型预测为1的数字。第二行第二个数字73表示实际为1,SVM模型也预测为1的个数。

12#生成准确率的混淆矩阵(Confusion matrix)metrics.confusion_matrix(expected, predicted)

从混淆矩阵中可以看到,大部分的数字SVM的分类和预测都是正确的,但也有个别的数字分类错误,例如真实的数字2,SVM模型有一次错误的分类为1,还有一次错误分类为7。

预测模型的分解过程

我总是集中于投入有质量的时间在建模的初始阶段,比如,假设生成、头脑风暴、讨论或理解可能的结果范围。所有这些活动都有助于我解决问题,并最终让我设计出更强大的商业解决方案。为什么你要在前面花费这段时间,这有充分的理由:

你有足够的时间投入并且你是无经验的(这是有影响的)

你不带有其它数据观点或想法的偏见(我总是建议,在深入研究数据之前做假设生成)

在后面的阶段,你会急于完成该项目而没有能力投入有质量的时间了。

这个阶段需要投入高质量时间,因此我没有提及时间表,不过我建议你把它作为标准的做法。这有助于你建立建立更好地预测模型,在后面的阶段的只需较少的迭代工作。让我们来看看建立第一个模型的剩余阶段的时间表:

数据描述性分析——50%的时间

数据预处理(缺失值和异常值修复)——40%的时间

数据建模——4%的时间

性能预测——6%的时间

让我们一步一步完成每个过程(每一步投入预测的时间):

阶段1:描述性分析/数据探索

在我刚开始成为数据科学家的时候,数据探索占据了我大量的时间。不过,随着时间的推移,我已经把大量的数据操作自动化了。由于数据准备占据建立第一个模型工作量的50%,自动化的好处是显而易见的。

这是我们的第一个基准模型,我们去掉任何特征设计。因此,描述分析所需的时间仅限于了解缺失值和直接可见的大的特征。在我的方法体系中,你将需要2分钟来完成这一步(假设,100000个观测数据集)。

我的第一个模型执行的操作:

确定ID,输入特征和目标特征

确定分类和数值特征

识别缺失值所在列

阶段2:数据预处理(缺失值处理)

有许多方法可以解决这个问题。对于我们的第一个模型,我们将专注于智能和快速技术来建立第一个有效模型。

为缺失值创建假标志:有用,有时缺失值本身就携带了大量的信息。

用均值、中位数或其它简单方法填补缺失值:均值和中位数填补都表现良好,大多数人喜欢用均值填补但是在有偏分布的情况下我建议使用中位数。其它智能的方法与均值和中位数填补类似,使用其它相关特征填补或建立模型。比如,在Titanic生存挑战中,你可以使用乘客名字的称呼,比如:“Mr.”, “Miss.”,”Mrs.”,”Master”,来填补年龄的缺失值,这对模型性能有很好的影响。

填补缺失的分类变量:创建一个新的等级来填补分类变量,让所有的缺失值编码为一个单一值比如,“New_Cat”,或者,你可以看看频率组合,使用高频率的分类变量来填补缺失值。

由于数据处理方法如此简单,你可以只需要3到4分钟来处理数据。

阶段3:数据建模

根据不同的业务问题,我推荐使用GBM或RandomForest技术的任意一种。这两个技术可以极其有效地创建基准解决方案。我已经看到数据科学家通常把这两个方法作为他们的第一个模型同时也作为最后一个模型。这最多用去4到5分钟。

阶段4:性能预测

有各种各样的方法可以验证你的模型性能,我建议你将训练数据集划分为训练集和验证集(理想的比例是70:30)并且在70%的训练数据集上建模。现在,使用30%的验证数据集进行交叉验证并使用评价指标进行性能评估。最后需要1到2分钟执行和记录结果。

本文的目的不是赢得比赛,而是建立我们自己的基准。让我们用python代码来执行上面的步骤,建立你的第一个有较高影响的模型。

让我们开始付诸行动

首先我假设你已经做了所有的假设生成并且你擅长使用python的基本数据科学操作。我用一个数据科学挑战的例子来说明。让我们看一下结构:

步骤1:导入所需的库,读取测试和训练数据集。

#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数

import pandas as pd

import numpy as np

fromsklearn.preprocessing import LabelEncoder

import random

fromsklearn.ensemble import RandomForestClassifier

from sklearn.ensembleimport GradientBoostingClassifier

#读取训练、测试数据集

train=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Train.csv')

test=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Test.csv')

#创建训练、测试数据集标志

train='Train'

test='Test'

fullData =pd.concat(,axis=0) #联合训练、测试数据集

步骤2:该框架的第二步并不需要用到python,继续下一步。

步骤3:查看数据集的列名或概要

fullData.columns # 显示所有的列名称

fullData.head(10) #显示数据框的前10条记录

fullData.describe() #你可以使用describe()函数查看数值域的概要

步骤4:确定a)ID变量 b)目标变量 c)分类变量 d)数值变量 e)其他变量。

ID_col =

target_col =

cat_cols =

num_cols= list(set(list(fullData.columns))-set(cat_cols)-set(ID_col)-set(target_col)-set(data_col))

other_col= #为训练、测试数据集设置标识符

步骤5:识别缺失值变量并创建标志

fullData.isnull().any()#返回True或False,True意味着有缺失值而False相反

num_cat_cols = num_cols+cat_cols # 组合数值变量和分类变量

#为有缺失值的变量创建一个新的变量

# 对缺失值标志为1,否则为0

for var in num_cat_cols:

if fullData.isnull().any()=True:

fullData=fullData.isnull()*1

步骤6:填补缺失值

#用均值填补数值缺失值

fullData = fullData.fillna(fullData.mean(),inplace=True)

#用-9999填补分类变量缺失值

fullData = fullData.fillna(value = -9999)

步骤7:创建分类变量的标签编码器,将数据集分割成训练和测试集,进一步,将训练数据集分割成训练集和测试集。

#创建分类特征的标签编码器

for var in cat_cols:

number = LabelEncoder()

fullData = number.fit_transform(fullData.astype('str'))

#目标变量也是分类变量,所以也用标签编码器转换

fullData = number.fit_transform(fullData.astype('str'))

train=fullData='Train']

test=fullData='Test']

train = np.random.uniform(0, 1, len(train)) <= .75

Train, Validate = train=True], train=False]

步骤8:将填补和虚假(缺失值标志)变量传递到模型中,我使用随机森林来预测类。

features=list(set(list(fullData.columns))-set(ID_col)-set(target_col)-set(other_col))

x_train = Train.values

y_train = Train.values

x_validate = Validate.values

y_validate = Validate.values

x_test=test.values

random.seed(100)

rf = RandomForestClassifier(n_estimators=1000)

rf.fit(x_train, y_train)

步骤9:检查性能做出预测

status = rf.predict_proba(x_validate)

fpr, tpr, _ = roc_curve(y_validate, status)

roc_auc = auc(fpr, tpr)

print roc_auc

final_status = rf.predict_proba(x_test)

test=final_status

test.to_csv('C:/Users/Analytics Vidhya/Desktop/model_output.csv',columns=)

现在可以提交了!

在做模型训练的时候,尤其是在训练集上做交叉验证,通常想要将模型保存下来,然后放到独立的测试集上测试,下面介绍的是python中训练模型的保存和再使用。

scikit-learn已经有了模型持久化的操作,导入joblib即可

from sklearn.externals import joblib

模型保存

>>>os.chdir("workspace/model_save")>>>from sklearn import svm>>>X = [[0, 0], [1, 1]]>>>y = [0, 1]>>>clf = svm.SVC()>>>clf.fit(X, y) >>>clf.fit(train_X,train_y)>>>joblib.dump(clf, "train_model.m")

通过joblib的dump可以将模型保存到本地,clf是训练的分类器

模型从本地调回

>>>clf = joblib.load("train_model.m")

通过joblib的load方法,加载保存的模型。

然后就可以在测试集上测试了

clf.predit(test_X,test_y)