python图书管理系统给书籍添加价值

Python014

python图书管理系统给书籍添加价值,第1张

用户进入系统后,可以通过键入数字1~5去实现相对应的功能,并且可以重复操作,直到输入数字5之后退出系统。

先创建一个空的列表,作为一个存放书籍信息的容器,执行程序时先进行初始化,自动添加几个已有的信息到列表中;

当输入数字1后,要求用户输入要录入的书籍名称,若书籍已存在列表中,则报错,若书籍不在列表中,则进一步要求用户输入相应的书籍信息,并把它们存放到列表中去;

当输入数字2后,要求用户输入要借阅的书籍名称,之后判断该书籍的库存数量是否为0,若库存为0,则返回库存不足的信息,否则,借阅成功,库存数减1,借出数加1;

当输入数字3后,要求用户输入要归还的书籍名称,并且库存数量加1,借出数量减1;

当输入数字4后,可以给用户以表格的形式返回所有的书籍信息;

当输入数字5后,退出系统。

在写图书借阅管理系统之前,需要写一个改变字体的颜色的代码,在借阅系统中出现不同的情况时,会有相应的颜色变化。

如果你已经决定学习Python数据分析,但是之前没有编程经验,那么,这6本书将会是你的正确选择。

《Python科学计算》

从发行版的安装开始,这本书将科学计算及可视化的常见函数库,如numpy、scipy、sympy、matplotlib、traits、tvtk、mayavi、opencv等等,都进行了较为详细地介绍。由于涉及面太广,可能对于单个函数库来说还不够深入,但是这本书能够让人快速上手,全面了解科学计算所用到的常用函数库。进而在此基础上选择自己需要的函数库进行深入学习,相对来说要容易得多。

《NumPyBeginner's Guide 2nd》/《Python数据分析基础教程:NumPy学习指南(第2版)》

面向新手的一本Numpy入门指南。整本书可谓是短小精干,条理清晰,将Numpy的基础内容讲得清清楚楚明明白白。此书的作者还写过一本《NumPyCookbook》/《NumPy攻略:Python科学计算与数据分析》,但这本书相比于前者,就显得结构有些杂乱,内容上也有些不上不下,如果要看的话,建议看完第一本再来看这本。在这里还想顺便吐槽一下这两本书的中文书名翻译。为了能够多卖几本,出版社也是蛮拼的,想方设法都要跟数据分析几个字挂上钩,就好像现在某些书总要扯上云和大数据一样。此外,还有一本《LearningSciPy for Numerical and Scientific Computing》的书,可以作为SciPy的入门教程来学习(似乎还没出中文版)。

《Pythonfor Data Analysis》/《利用Python进行数据分析》

这本书也是从numpy讲起,侧重于数据分析的各个流程,包括数据的存取、规整、可视化等等。此外,本书还涉及了pandas这个库,有兴趣的可以看看。

《MachineLearning in Action》/《机器学习实战》

Python机器学习的白盒入门教程,着重于讲解机器学习的各类常用算法,以及如何用Python来实现它们。这是一本教你如何造轮子的书,但是造出来的轮子似乎也不怎么好用就是了。不过,对于立志要造汽车的人们来说,了解一下轮子的结构和原理,还是十分必要的。此外,打算阅读此书之前,如果各位的高数线代概率论都忘得差不多了的话,还是先补一补比较好。

《BuildingMachine Learning Systems with Python》/《机器学习系统设计》

Python机器学习的黑盒入门教程。如果说上一本书是教你如何组装轮子的话,这本书就是直接告诉你怎么把轮子转起来以及如何才能转得更好。至于轮子为什么能转起来,请参阅上一本书。另外,可以配合《Learning scikit-learn:Machine Learning in Python》这本书来阅读(暂无中文版)。这本书是针对Python的机器学习库scikit-learn进行专门讲解的一本书,100页左右,可以作为官方文档的拓展读物。

《Pythonfor Finance》

教你用Python处理金融数据的一本书,应该是中国人写的,Packt出版,不过似乎现在还没有中文版。比起前面几本书,这本书专业性要强一些,侧重于金融数据分析。这本书我还没怎么看,也写不出什么更详细的介绍。之所以把它列出来,是因为在查资料的时候发现,O'Reilly年底似乎也准备出一本《Python for Finance》。看来Python真的是越来越火了。