python遗传算法目标函数怎么编

Python014

python遗传算法目标函数怎么编,第1张

一、遗传算法介绍

遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们用遗传算法求一个函数的最大值。

f(x) = 10 * sin( 5x ) + 7 * cos( 4x ),0 <= x <= 10

1、将自变量x进行编码

基因片段的长度为10, 则10位二进制位可以表示的范围是0到1023。基因与自变量转变的公式是x = b2d(individual) * 10 / 1023。构造初始的种群pop。每个个体的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

2、计算目标函数值

根据自变量与基因的转化关系式,求出每个个体的基因对应的自变量,然后将自变量代入函数f(x),求出每个个体的目标函数值。

3、适应度函数

适应度函数是用来评估个体适应环境的能力,是进行自然选择的依据。本题的适应度函数直接将目标函数值中的负值变成0. 因为我们求的是最大值,所以要使目标函数值是负数的个体不适应环境,使其繁殖后代的能力为0.适应度函数的作用将在自然选择中体现。

4、自然选择

自然选择的思想不再赘述,操作使用轮盘赌算法。其具体步骤:

假设种群中共5个个体,适应度函数计算出来的个体适应性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果将fitvalue画到圆盘上,值的大小表示在圆盘上的面积。在转动轮盘的过程中,单个模块的面积越大则被选中的概率越大。选择的方法是将fitvalue转化为[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后产生5个0-1之间的随机数,将随机数从小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],则将0号个体、1号个体、4号个体、4号个体、4号个体拷贝到新种群中。自然选择的结果使种群更符合条件了。

5、繁殖

假设个体a、b的基因是

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]

b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]

这两个个体发生基因交换的概率pc = 0.6.如果要发生基因交换,则产生一个随机数point表示基因交换的位置,假设point = 4,则:

a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]

b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]

交换后为:

a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]

b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]

6、突变

遍历每一个个体,基因的每一位发生突变(0变为1,1变为0)的概率为0.001.突变可以增加解空间

二、代码

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

def b2d(b): #将二进制转化为十进制 x∈[0,10] t = 0 for j in range(len(b)): t += b[j] * (math.pow(2, j)) t = t * 10 / 1023 return tpopsize = 50 #种群的大小#用遗传算法求函数最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的长度pc = 0.6 #两个个体交叉的概率pm = 0.001#基因突变的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(popsize)]for i in range(100): #繁殖100代 objvalue = calobjvalue(pop) #计算目标函数值 fitvalue = calfitvalue(objvalue)#计算个体的适应值 [bestindividual, bestfit] = best(pop, fitvalue) #选出最好的个体和最好的函数值 results.append([bestfit,b2d(bestindividual)]) #每次繁殖,将最好的结果记录下来 selection(pop, fitvalue) #自然选择,淘汰掉一部分适应性低的个体 crossover(pop, pc) #交叉繁殖 mutation(pop, pc) #基因突变 results.sort() print(results[-1]) #打印函数最大值和对应的

来自CODE的代码片

GA.py

1

2

3

4

5

6

7

8

9

def best(pop, fitvalue): #找出适应函数值中最大值,和对应的个体 px = len(pop) bestindividual = [] bestfit = fitvalue[0] for i in range(1,px): if(fitvalue[i] >bestfit): bestfit = fitvalue[i] bestindividual = pop[i] return [bestindividual, bestfit]

来自CODE的代码片

best.py

1

2

3

4

5

6

7

8

9

10

11

def calfitvalue(objvalue):#转化为适应值,目标函数值越大越好,负值淘汰。fitvalue = []temp = 0.0Cmin = 0 for i in range(len(objvalue)):if(objvalue[i] + Cmin >0):temp = Cmin + objvalue[i]else:temp = 0.0fitvalue.append(temp)return fitvalue

来自CODE的代码片

calfitvalue.py

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

import mathdef decodechrom(pop): #将种群的二进制基因转化为十进制(0,1023)temp = [] for i in range(len(pop)):t = 0 for j in range(10):t += pop[i][j] * (math.pow(2, j))temp.append(t)return tempdef calobjvalue(pop): #计算目标函数值temp1 = [] objvalue = [] temp1 = decodechrom(pop)for i in range(len(temp1)):x = temp1[i] * 10 / 1023 #(0,1023)转化为 (0,10)objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x))return objvalue #目标函数值objvalue[m] 与个体基因 pop[m] 对应

来自CODE的代码片

calobjvalue.py

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

import randomdef crossover(pop, pc): #个体间交叉,实现基因交换poplen = len(pop)for i in range(poplen - 1):if(random.random() <pc):cpoint = random.randint(0,len(pop[0]))temp1 = []temp2 = []temp1.extend(pop[i][0 : cpoint])temp1.extend(pop[i+1][cpoint : len(pop[i])])temp2.extend(pop[i+1][0 : cpoint])temp2.extend(pop[i][cpoint : len(pop[i])])pop[i] = temp1pop[i+1] = temp2

来自CODE的代码片

crossover.py

1

2

3

4

5

6

7

8

9

10

11

12

13

import randomdef mutation(pop, pm): #基因突变px = len(pop)py = len(pop[0])for i in range(px):if(random.random() <pm):mpoint = random.randint(0,py-1)if(pop[i][mpoint] == 1):pop[i][mpoint] = 0else:pop[i][mpoint] = 1

来自CODE的代码片

mutation.py

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

import randomdef sum(fitvalue):total = 0for i in range(len(fitvalue)):total += fitvalue[i]return totaldef cumsum(fitvalue):for i in range(len(fitvalue)):t = 0 j = 0 while(j <= i):t += fitvalue[j]j = j + 1fitvalue[i] = tdef selection(pop, fitvalue): #自然选择(轮盘赌算法) newfitvalue = [] totalfit = sum(fitvalue) for i in range(len(fitvalue)): newfitvalue.append(fitvalue[i] / totalfit) cumsum(newfitvalue) ms = [] poplen = len(pop) for i in range(poplen): ms.append(random.random()) #random float list ms ms.sort() fitin = 0 newin = 0 newpop = pop while newin <poplen: if(ms[newin] <newfitvalue[fitin]): newpop[newin] = pop[fitin] newin = newin + 1 else: fitin = fitin + 1 pop = newpop

首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了)。大致过程分为初始化编码、个体评价、选择,交叉,变异。

以目标式子 y = 10 * sin(5x) + 7 * cos(4x)为例,计算其最大值

首先是初始化,包括具体要计算的式子、种群数量、染色体长度、交配概率、变异概率等。并且要对基因序列进行初始化

[python] view plain copy

pop_size = 500      # 种群数量

max_value = 10      # 基因中允许出现的最大值

chrom_length = 10       # 染色体长度

pc = 0.6            # 交配概率

pm = 0.01           # 变异概率

results = [[]]      # 存储每一代的最优解,N个二元组

fit_value = []      # 个体适应度

fit_mean = []       # 平均适应度

pop = geneEncoding(pop_size, chrom_length)

其中genEncodeing是自定义的一个简单随机生成序列的函数,具体实现如下

[python] view plain copy

def geneEncoding(pop_size, chrom_length):

pop = [[]]

for i in range(pop_size):

temp = []

for j in range(chrom_length):

temp.append(random.randint(0, 1))

pop.append(temp)

return pop[1:]

编码完成之后就是要进行个体评价,个体评价主要是计算各个编码出来的list的值以及对应带入目标式子的值。其实编码出来的就是一堆2进制list。这些2进制list每个都代表了一个数。其值的计算方式为转换为10进制,然后除以2的序列长度次方减一,也就是全一list的十进制减一。根据这个规则就能计算出所有list的值和带入要计算式子中的值,代码如下

[python] view plain copy

# 0.0 coding:utf-8 0.0

# 解码并计算值

import math

def decodechrom(pop, chrom_length):

temp = []

for i in range(len(pop)):

t = 0

for j in range(chrom_length):

t += pop[i][j] * (math.pow(2, j))

temp.append(t)

return temp

def calobjValue(pop, chrom_length, max_value):

temp1 = []

obj_value = []

temp1 = decodechrom(pop, chrom_length)

for i in range(len(temp1)):

x = temp1[i] * max_value / (math.pow(2, chrom_length) - 1)

obj_value.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x))

return obj_value

有了具体的值和对应的基因序列,然后进行一次淘汰,目的是淘汰掉一些不可能的坏值。这里由于是计算最大值,于是就淘汰负值就好了

[python] view plain copy

# 0.0 coding:utf-8 0.0

# 淘汰(去除负值)

def calfitValue(obj_value):

fit_value = []

c_min = 0

for i in range(len(obj_value)):

if(obj_value[i] + c_min > 0):

temp = c_min + obj_value[i]

else:

temp = 0.0

fit_value.append(temp)

return fit_value

然后就是进行选择,这是整个遗传算法最核心的部分。选择实际上模拟生物遗传进化的优胜劣汰,让优秀的个体尽可能存活,让差的个体尽可能的淘汰。个体的好坏是取决于个体适应度。个体适应度越高,越容易被留下,个体适应度越低越容易被淘汰。具体的代码如下

[python] view plain copy

# 0.0 coding:utf-8 0.0

# 选择

import random

def sum(fit_value):

total = 0

for i in range(len(fit_value)):

total += fit_value[i]

return total

def cumsum(fit_value):

for i in range(len(fit_value)-2, -1, -1):

t = 0

j = 0

while(j <= i):

t += fit_value[j]

j += 1

fit_value[i] = t

fit_value[len(fit_value)-1] = 1

def selection(pop, fit_value):

newfit_value = []

# 适应度总和

total_fit = sum(fit_value)

for i in range(len(fit_value)):

newfit_value.append(fit_value[i] / total_fit)

# 计算累计概率

cumsum(newfit_value)

ms = []

pop_len = len(pop)

for i in range(pop_len):

ms.append(random.random())

ms.sort()

fitin = 0

newin = 0

newpop = pop

# 转轮盘选择法

while newin < pop_len:

if(ms[newin] < newfit_value[fitin]):

newpop[newin] = pop[fitin]

newin = newin + 1

else:

fitin = fitin + 1

pop = newpop

以上代码主要进行了3个操作,首先是计算个体适应度总和,然后在计算各自的累积适应度。这两步都好理解,主要是第三步,转轮盘选择法。这一步首先是生成基因总数个0-1的小数,然后分别和各个基因的累积个体适应度进行比较。如果累积个体适应度大于随机数则进行保留,否则就淘汰。这一块的核心思想在于:一个基因的个体适应度越高,他所占据的累计适应度空隙就越大,也就是说他越容易被保留下来。

选择完后就是进行交配和变异,这个两个步骤很好理解。就是对基因序列进行改变,只不过改变的方式不一样

交配:

[python] view plain copy

# 0.0 coding:utf-8 0.0

# 交配

import random

def crossover(pop, pc):

pop_len = len(pop)

for i in range(pop_len - 1):

if(random.random() < pc):

cpoint = random.randint(0,len(pop[0]))

temp1 = []

temp2 = []

temp1.extend(pop[i][0:cpoint])

temp1.extend(pop[i+1][cpoint:len(pop[i])])

temp2.extend(pop[i+1][0:cpoint])

temp2.extend(pop[i][cpoint:len(pop[i])])

pop[i] = temp1

pop[i+1] = temp2

变异:

[python] view plain copy

# 0.0 coding:utf-8 0.0

# 基因突变

import random

def mutation(pop, pm):

px = len(pop)

py = len(pop[0])

for i in range(px):

if(random.random() < pm):

mpoint = random.randint(0, py-1)

if(pop[i][mpoint] == 1):

pop[i][mpoint] = 0

else:

pop[i][mpoint] = 1

整个遗传算法的实现完成了,总的调用入口代码如下

[python] view plain copy

# 0.0 coding:utf-8 0.0

import matplotlib.pyplot as plt

import math

from calobjValue import calobjValue

from calfitValue import calfitValue

from selection import selection

from crossover import crossover

from mutation import mutation

from best import best

from geneEncoding import geneEncoding

print 'y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x)'

# 计算2进制序列代表的数值

def b2d(b, max_value, chrom_length):

t = 0

for j in range(len(b)):

t += b[j] * (math.pow(2, j))

t = t * max_value / (math.pow(2, chrom_length) - 1)

return t

pop_size = 500      # 种群数量

max_value = 10      # 基因中允许出现的最大值

chrom_length = 10       # 染色体长度

pc = 0.6            # 交配概率

pm = 0.01           # 变异概率

results = [[]]      # 存储每一代的最优解,N个二元组

fit_value = []      # 个体适应度

fit_mean = []       # 平均适应度

# pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(pop_size)]

pop = geneEncoding(pop_size, chrom_length)

for i in range(pop_size):

obj_value = calobjValue(pop, chrom_length, max_value)        # 个体评价

fit_value = calfitValue(obj_value)      # 淘汰

best_individual, best_fit = best(pop, fit_value)        # 第一个存储最优的解, 第二个存储最优基因

results.append([best_fit, b2d(best_individual, max_value, chrom_length)])

selection(pop, fit_value)       # 新种群复制

crossover(pop, pc)      # 交配

mutation(pop, pm)       # 变异

results = results[1:]

results.sort()

X = []

Y = []

for i in range(500):

X.append(i)

t = results[i][0]

Y.append(t)

plt.plot(X, Y)

plt.show()

最后调用了一下matplotlib包,把500代最优解的变化趋势表现出来。

完整代码可以在github 查看

欢迎访问我的个人博客

阅读全文

排课问题的本质是将课程、教师和学生在合适的时间段内分配到合适的教室中,涉及到的因素较多,是一个多目标的调度问题,在运筹学中被称为时间表问题(Timetable Problem,TTP)。设一个星期有n个时段可排课,有m位教师需要参与排课,平均每位教师一个星期上k节课,在不考虑其他限制的情况下,能够推出的可能组合就有 种,如此高的复杂度是目前计算机所无法承受的。因此众多研究者提出了多种其他排课算法,如模拟退火,列表寻优搜索和约束满意等。

Github : https://github.com/xiaochus/GeneticClassSchedule

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法的流程如下所示:

遗传算法首先针对待解决问题随机生成一组解,我们称之为种群(Population)。种群中的每个个体都是问题的解,在优化的过程中,算法会计算整个种群的成本函数,从而得到一个与种群相关的适应度的序列。如下图所示:

为了得到新的下一代种群,首先根据适应度对种群进行排序,从中挑选出最优的几个个体加入下一代种群,这一个过程也被称为精英选拔。新种群余下的部分通过对选拔出来的精英个体进行修改得到。

对种群进行修改的方法参考了生物DAN进化的方法,一般使用两种方法: 变异 和 交叉 。 变异 的做法是对种群做一个微小的、随机的改变。如果解的编码方式是二进制,那么就随机选取一个位置进行0和1的互相突变;如果解的编码方式是十进制,那么就随机选取一个位置进行随机加减。 交叉 的做法是随机从最优种群中选取两个个体,以某个位置为交叉点合成一个新的个体。

经过突变和交叉后我们得到新的种群(大小与上一代种群一致),对新种群重复重复上述过程,直到达到迭代次数(失败)或者解的适应性达到我们的要求(成功),GA算法就结束了。

算法实现

首先定义一个课程类,这个类包含了课程、班级、教师、教室、星期、时间几个属性,其中前三个是我们自定义的,后面三个是需要算法来优化的。

接下来定义cost函数,这个函数用来计算课表种群的冲突。当被测试课表冲突为0的时候,这个课表就是个符合规定的课表。冲突检测遵循下面几条规则:

使用遗传算法进行优化的过程如下,与上一节的流程图过程相同。

init_population :随机初始化不同的种群。

mutate :变异操作,随机对 Schedule 对象中的某个可改变属性在允许范围内进行随机加减。

crossover :交叉操作,随机对两个对象交换不同位置的属性。

evolution :启动GA算法进行优化。

实验结果

下面定义了3个班,6种课程、教师和3个教室来对排课效果进行测试。

优化结果如下,迭代到第68次时,课程安排不存在任何冲突。

选择1203班的课表进行可视化,如下所示,算法合理的安排了对应的课程。