求python 熵值法实现代码

Python08

求python 熵值法实现代码,第1张

一、基本原理

在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。

根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。

二、熵值法步骤

1. 选取n个国家,m个指标,则为第i个国家的第j个指标的数值(i=1, 2…, nj=1,2,…, m);

2. 指标的归一化处理:异质指标同质化

由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令,从而解决各项不同质指标值的同质化问题。而且,由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此,对于高低指标我们用不同的算法进行数据标准化处理。其具体方法如下:

正向指标:

负向指标:

则为第i个国家的第j个指标的数值(i=1, 2…, nj=1, 2,…, m)。为了方便起见,归一化后的数据仍记为

3. 计算第j项指标下第i个国家占该指标的比重:

4. 计算第j项指标的熵值:

其中. 满足

5. 计算信息熵冗余度:

6. 计算各项指标的权值:

7. 计算各国家的综合得分:

[code]function [s,w]=shang(x)

% 函数shang.m, 实现用熵值法求各指标(列)的权重及各数据行的得分

% x为原始数据矩阵, 一行代表一个国家, 每列对应一个指标

% s返回各行得分, w返回各列权重

[n,m]=size(x)% n=23个国家, m=5个指标

%% 数据的归一化处理

% Matlab2010b,2011a,b版本都有bug,需如下处理. 其它版本直接用[X,ps]=mapminmax(x',0,1)即可

[X,ps]=mapminmax(x')

ps.ymin=0.002% 归一化后的最小值

ps.ymax=0.996% 归一化后的最大值

ps.yrange=ps.ymax-ps.ymin% 归一化后的极差,若不调整该值, 则逆运算会出错

X=mapminmax(x',ps)

% mapminmax('reverse',xx,ps)% 反归一化, 回到原数据

X=X' % X为归一化后的数据, 23行(国家), 5列(指标)

%% 计算第j个指标下,第i个记录占该指标的比重p(i,j)

for i=1:n

for j=1:m

p(i,j)=X(i,j)/sum(X(:,j))

end

end

%% 计算第j个指标的熵值e(j)

k=1/log(n)

for j=1:m

e(j)=-k*sum(p(:,j).*log(p(:,j)))

end

d=ones(1,m)-e % 计算信息熵冗余度

w=d./sum(d) % 求权值w

s=w*p'% 求综合得分[\code]

测试程序:

data.txt 数据如下:

114.6 1.1 0.71 85.0 346

55.3 0.96 0.4 69.0 300

132.4 0.97 0.54 73.0 410

152.1 1.04 0.49 77.0 433

103.5 0.96 0.66 67.0 385

81.0 1.08 0.54 96.0 336

179.3 0.88 0.59 89.0 446

29.8 0.83 0.49 120.0 289

92.7 1.15 0.44 154.0 300

248.6 0.79 0.5 147.0 483

115.0 0.74 0.65 252.0 453

64.9 0.59 0.5 167.0 402

163.6 0.85 0.58 220.0 495

95.7 1.02 0.48 160.0 384

139.5 0.70 0.59 217.0 478

89.9 0.96 0.39 105.0 314

76.7 0.95 0.51 162.0 341

121.8 0.83 0.60 140.0 401

42.1 1.08 0.47 110.0 326

78.5 0.89 0.44 94.0 280

77.8 1.19 0.57 91.0 364

90.0 0.95 0.43 89.0 301

100.6 0.82 0.59 83.0 456

执行代码:

[code]x=load('data.txt') % 读入数据

[s,w]=shang(x)[\code]

运行结果:

s =

Columns 1 through 9

0.04310.0103 0.03710.04040.03690.0322 0.05070.02290.0397

Columns 10 through 18

0.06930.0878 0.04660.08600.05030.0800 0.02340.04560.0536

Columns 19 through 23

0.02720.0181 0.03640.02020.0420

w =

0.16600.0981 0.17570.33480.2254

可以使用Python版的opencv 来实现。

现读取图片:

import cv2

import numpy as np

from matplotlib import pyplot as plt

image=cv2.imread('./src/q5.png')

HSV=cv2.cvtColor(image,cv2.COLOR_BGR2HSV)

计算熵

img = np.array(HSV)

for i in range(len(img)):

    for j in range(len(img[i])):

        val = img[i][j]

        tmp[val] = float(tmp[val] + 1)

        k =  float(k + 1)

for i in range(len(tmp)):

    tmp[i] = float(tmp[i] / k)

for i in range(len(tmp)):

    if(tmp[i] == 0):

        res = res

    else:

        res = float(res - tmp[i] * (math.log(tmp[i]) / math.log(2.0)))

保存:

HSV图形可以直接存储,特征可以存xml中~

cv2.imwrite("具体路径",HSV)

将其整理成数据集为:

[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]

算法过程:

1、计算原始的信息熵。

2、依次计算数据集中每个样本的每个特征的信息熵。

3、比较不同特征信息熵的大小,选出信息熵最大的特征值并输出。

运行结果:

col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0

col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108

bestInfoGain : 2.37744375108 bestFeature: 0

结果分析:

说明按照第一列,即有无喉结这个特征来进行分类的效果更好。

思考:

1、能否利用决策树算法,将样本最终的分类结果进行输出?如样本1,2,3属于男性,4属于女性。

2、示例程序生成的决策树只有一层,当特征量增多的时候,如何生成具有多层结构的决策树?

3、如何评判分类结果的好坏?

在下一篇文章中,我将主要对以上三个问题进行分析和解答。如果您也感兴趣,欢迎您订阅我的文章,也可以在下方进行评论,如果有疑问或认为不对的地方,您也可以留言,我将积极与您进行解答。

完整代码如下:

from math import log

"""

计算信息熵

"""

def calcEntropy(dataset):

diclabel = {} ## 标签字典,用于记录每个分类标签出现的次数

for record in dataset:

label = record[-1]

if label not in diclabel.keys():

diclabel[label] = 0

diclabel[label] += 1

### 计算熵

entropy = 0.0

cnt = len(dataset)

for label in diclabel.keys():

prob = float(1.0 * diclabel[label]/cnt)

entropy -= prob * log(prob,2)

return entropy

def initDataSet():

dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]

label = ["male","female"]

return dataset,label

#### 拆分dataset ,根据指定的过滤选项值,去掉指定的列形成一个新的数据集

def splitDataset(dataset , col, value):

retset = [] ## 拆分后的数据集

for record in dataset:

if record[col] == value :

reducedFeatVec = record[:col]

reducedFeatVec.extend(record[col+1:]) ### 将指定的列剔除

retset.append(reducedFeatVec) ### 将新形成的特征值列表追加到返回的列表中

return retset

### 找出信息熵增益最大的特征值

### 参数:

### dataset : 原始的数据集

def findBestFeature(dataset):

numFeatures = len(dataset[0]) - 1 ### 特征值的个数

baseEntropy = calcEntropy(dataset) ### 计算原始数据集的熵

baseInfoGain = 0.0 ### 初始信息增益

bestFeature = -1 ### 初始的最优分类特征值索引

### 计算每个特征值的熵

for col in range(numFeatures):

features = [record[col] for record in dataset] ### 提取每一列的特征向量 如此处col= 0 ,则features = [1,1,0,0]

uniqueFeat = set(features)

curInfoGain = 0 ### 根据每一列进行拆分,所获得的信息增益

for featVal in uniqueFeat:

subDataset = splitDataset(dataset,col,featVal) ### 根据col列的featVal特征值来对数据集进行划分

prob = 1.0 * len(subDataset)/numFeatures ### 计算子特征数据集所占比例

curInfoGain += prob * calcEntropy(subDataset) ### 计算col列的特征值featVal所产生的信息增益

# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain

print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain

if curInfoGain >baseInfoGain:

baseInfoGain = curInfoGain

bestFeature = col

return baseInfoGain,bestFeature ### 输出最大的信息增益,以获得该增益的列

dataset,label = initDataSet()

infogain , bestFeature = findBestFeature(dataset)

print "bestInfoGain :" , infogain, " bestFeature:",bestFeature