如何用python实现pca降维

Python018

如何用python实现pca降维,第1张

首先2个包:

import numpy as np

from sklearn.decomposition import PCA

然后一个m x n 的矩阵,n为维度,这里设为x。

n_components = 12 是自己可以设的。

pca = PCA(n_components=12)

pca.fit(x)

PCA(copy=True, iterated_power='auto', n_components=12, random_state=None,

  svd_solver='auto', tol=0.0, whiten=False)

float_formatter = lambda x: "%.2f" % x

np.set_printoptions(formatter={'float_kind':float_formatter})

print 'explained variance ratio:'

print pca.explained_variance_ratio_

print 'cumulative sum:'

print pca.explained_variance_ratio_.cumsum()

回顾了下PCA的步骤,并用python实现。深刻的发现当年学的特征值、特征向量好强大。

PCA是一种无监督的学习方式,是一种很常用的降维方法。在数据信息损失最小的情况下,将数据的特征数量由n,通过映射到另一个空间的方式,变为k(k<n)。

这里用一个2维的数据来说明PCA,选择2维的数据是因为2维的比较容易画图。

这是数据:

画个图看看分布情况:

协方差的定义为:

假设n为数据的特征数,那么协方差矩阵M, 为一个n n的矩阵,其中Mij为第i和第j个特征的协方差,对角线是各个特征的方差。

在我们的数据中,n=2,所以协方差矩阵是2 2的,

通过numpy我们可以很方便的得到:

得到cov的结果为:

array([[ 0.61655556, 0.61544444],

[ 0.61544444, 0.71655556]])

由于我们之前已经做过normalization,因此对于我们来说,

这个矩阵就是 data*data的转置矩阵。

得到结果:

matrix([[ 5.549, 5.539],

[ 5.539, 6.449]])

我们发现,其实协方差矩阵和散度矩阵关系密切,散度矩阵 就是协方差矩阵乘以(总数据量-1)。因此他们的 特征根 特征向量 是一样的。这里值得注意的一点就是,散度矩阵是 SVD奇异值分解 的一步,因此PCA和SVD是有很大联系的,他们的关系这里就不详细谈了,以后有机会再写下。

用numpy计算特征根和特征向量很简单,

但是他们代表的意义非常有意思,让我们将特征向量加到我们原来的图里:

其中红线就是特征向量。有几点值得注意:

蓝色的三角形就是经过坐标变换后得到的新点,其实他就是红色原点投影到红线、蓝线形成的。

得到特征值和特征向量之后,我们可以根据 特征值 的大小,从大到小的选择K个特征值对应的特征向量。

这个用python的实现也很简单:

从eig_pairs选取前k个特征向量就行。这里,我们只有两个特征向量,选一个最大的。

主要将原来的数据乘以经过筛选的特征向量组成的特征矩阵之后,就可以得到新的数据了。

output:

数据果然变成了一维的数据。

最后我们通过画图来理解下数据经过PCA到底发生了什么。

绿色的五角星是PCA处理过后得到的一维数据,为了能跟以前的图对比,将他们的高度定位1.2,其实就是红色圆点投影到蓝色线之后形成的点。这就是PCA,通过选择特征根向量,形成新的坐标系,然后数据投影到这个新的坐标系,在尽可能少的丢失信息的基础上实现降维。

通过上述几步的处理,我们简单的实现了PCA第一个2维数据的处理,但是原理就是这样,我们可以很轻易的就依此实现多维的。

用sklearn的PCA与我们的pca做个比较:

得到结果:

用我们的pca试试

得到结果:

完全一致,完美~

值得一提的是,sklearn中PCA的实现,用了部分SVD的结果,果然他们因缘匪浅。

谱聚类概念

谱聚类是一种基于图论的聚类方法,通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据聚类的母的。谱聚类可以理解为将高维空间的数据映射到低维,然后在低维空间用其它聚类算法(如KMeans)进行聚类。

算法步骤

1 计算相似度矩阵 W

2 计算度矩阵 D

3 计算拉普拉斯矩阵L=D-W

4 计算L的特征值,将特征值从小到大排序,取前k个特征值.将这个特征值向量转换为矩阵

5 通过其他聚类算法对其进行聚类,如k-means

详细公式和概念请到 大佬博客

相比较PCA降维中取前k大的特征值对应的特征向量,这里取得是前k小的特征值对应的特征向量。但是上述的谱聚类算法并不是最优的,接下来我们一步一步的分解上面的步骤,总结一下在此基础上进行优化的谱聚类的版本。

python实现

例子一:使用谱聚类从噪声背景中分割目标

效果图

例子2:分割图像中硬币的区域

效果图

注意

1)当聚类的类别个数较小的时候,谱聚类的效果会很好,但是当聚类的类别个数较大的时候,则不建议使用谱聚类;

(2)谱聚类算法使用了降维的技术,所以更加适用于高维数据的聚类;

(3)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法(比如K-Means)很难做到

(4)谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解

(5)谱聚类对相似度图的改变和聚类参数的选择非常的敏感;

(6)谱聚类适用于均衡分类问题,即各簇之间点的个数相差不大,对于簇之间点个数相差悬殊的聚类问题,谱聚类则不适用;

参考

谱聚类算法介绍

sklearn官网