python如何将多维字典每个键的值转换成多维列表?

Python015

python如何将多维字典每个键的值转换成多维列表?,第1张

定义一个递归函数就行了,下面是一个例子:

def get(d):

l=[]

for k,v in d.items():

if isinstance(v,dict):

l.append(get(v))

else:

l.append(v)

return l

d={"1":"2","a":{"b":{"c":"1"}},"b":"c"}

l=get(d)

print(l)

这是运行截图:

在Python中,一个像这样的多维表格可以通过“序列的序列”实现。一个表格是行的序列。每一行又是独立单元格的序列。这类似于我们使用的数学记号,在数学里我们用Ai,j,而在Python里我们使用A[i][j],代表矩阵的第i行第j列。

这看起来非常像“元组的列表”(Lists of Tuples)。

“列表的列表”示例:

我们可以使用嵌套的列表推导式(list comprehension)创建一个表格。 下面的例子创建了一个“序列的序列”构成的表格,并为表格的每一个单元格赋值。

table= [ [ 0 for i in range(6) ] for j in range(6) ]print tablefor d1 in range(6):for d2 in range(6):table[d1][d2]= d1+d2+2print table123456程序的输出结果如下:

[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]],

[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9],

[5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [7, 8, 9, 10, 11, 12]]

1234

这个程序做了两件事:创建了一个6 × 6的全0表格。 然后使用两枚骰子的可能组合的数值填充表格。 这并非完成此功能最有效的方式,但我们通过这个简单的例子来演示几项技术。我们仔细看一下程序的前后两部分。

程序的第一部分创建并输出了一个包含6个元素的列表,我们称之为“表格”;表格中的每一个元素都是一个包含6个0元素的列表。它使用列表推导式,对于范围从0到6的每一个j都创建对象。每一个对象都是一个0元素列表,由i变量从0到6遍历产生。初始化完成之后,打印输出二维全0表格。

推导式可以从里向外阅读,就像一个普通表达式一样。内层列表[ 0 for i in range(6) ]创建了一个包含6个0的简单列表。外层列表[ [...] for j in range(6) ]创建了这些内层列表的6个深拷贝。

程序的第2个部分对2个骰子的每一个组合进行迭代,填充表格的每一个单元格。这由两层嵌套循环实现,每一个循环迭代一个骰子。外层循环枚举第一个骰子的所有可能值d1。内层循环枚举第二个骰子d2。

更新每一个单元格时需要通过table[d1]选择每一行;这是一个包含6个值的列表。这个列表中选定的单元格通过...[d2]进行选择。我们将掷骰子的值赋给这个单元格,d1+d2+2。

其他示例:

打印出的列表的列表不太容易阅读。下面的循环会以一种更加可读的形式显示表格。

for row in table:

print row[2, 3, 4, 5, 6, 7]

[3, 4, 5, 6, 7, 8]

[4, 5, 6, 7, 8, 9]

[5, 6, 7, 8, 9, 10]

[6, 7, 8, 9, 10, 11]

[7, 8, 9, 10, 11, 12]

12345678910111213作为练习,读者可以试着在打印列表内容时,再打印出行和列的表头。提示一下,使用"%2d" % value字符串运算符可以打印出固定长度的数字格式。显示索引值(Explicit Index Values)。

我们接下来对骰子表格进行汇总统计,得出累计频率表。我们使用一个包含13个元素的列表(下标从0到12)表示每一个骰子值的出现频率。观察可知骰子值2在矩阵中只出现了一次,因此我们期望fq[2]的值为1。遍历矩阵中的每一个单元格,得出累计频率表。

fq= 13 * [0]for i in range(6):for j in range(6):c= table[i][j]fq[ c ] += 112345使用下标i选出表格中的行,用下标j从行中选出一列,得到单元格c。然后用fq统计频率。

这看起来非常的数学和规范。

Python提供了另外一种更简单一些的方式。

使用列表迭代器而非下标,表格是列表的列表,可以采用无下标的for循环遍历列表元素。

fq= 13 * [0]print fqfor row in table:for c in row:fq[c] += 1print fq[2:

Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。

受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。

Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。

最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!

用 pip install plotly_express 命令可以安装 Plotly Express。

一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是 px.scatter(data,x =“column_name”,y =“column_name”)。

以下是内置的 Gapminder 数据集的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:

如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:

这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:

如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:

也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:

也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。

在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:

因为这是地理数据,我们也可以将其表示为动画地图,因此这清楚地表明 Plotly Express 不仅仅可以绘制散点图(不过这个数据集缺少前苏联的数据)。

事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。

进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。 大多数二维笛卡尔图接受连续或分类数据,并自动处理日期/时间数据。 可以查看我们的图库 (ref-3) 来了解每个图表的例子。

数据 探索 的主要部分是理解数据集中值的分布,以及这些分布如何相互关联。 Plotly Express 有许多功能来处理这些任务。

使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布:

直方图:

箱形图:

小提琴图:

还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。 Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。

在上面的一些图中你会注意到一些不错的色标。 在 Plotly Express 中, px.colors 模块包含许多有用的色标和序列:定性的、序列型的、离散的、循环的以及所有您喜欢的开源包:ColorBrewer、cmocean 和 Carto 。 我们还提供了一些功能来制作可浏览的样本供您欣赏(ref-3):

定性的颜色序列:

众多内置顺序色标中的一部分:

我们特别为我们的交互式多维图表感到自豪,例如散点图矩阵(SPLOMS)、平行坐标和我们称之为并行类别的并行集。 通过这些,您可以在单个图中可视化整个数据集以进行数据 探索 。 在你的Jupyter 笔记本中查看这些单行及其启用的交互:

散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起!

平行坐标允许您同时显示3个以上的连续变量。 dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。

并行类别是并行坐标的分类模拟:使用它们可视化数据集中多组类别之间的关系。

Plotly Express 之于 Plotly.py 类似 Seaborn 之于 matplotlib:Plotly Express 是一个高级封装库,允许您快速创建图表,然后使用底层 API 和生态系统的强大功能进行修改。 对于Plotly 生态系统,这意味着一旦您使用 Plotly Express 创建了一个图形,您就可以使用Themes,使用 FigureWidgets 进行命令性编辑,使用 Orca 将其导出为几乎任何文件格式,或者在我们的 GUI JupyterLab 图表编辑器中编辑它 。

主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。 您可以使用模板参数应用任何命名的主题或主题对象:

有三个内置的 Plotly 主题可以使用, 分别是 plotly, plotlywhite 和 plotlydark。

px 输出继承自 Plotly.py 的 Figure 类 ExpressFigure 的对象,这意味着你可以使用任何 Figure 的访问器和方法来改变 px生成的绘图。 例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作:

在这里,在使用 Plotly Express 生成原始图形之后,我们使用 Plotly.py 的 API 来更改一些图例设置并添加注释。

Dash 是 Plotly 的开源框架,用于构建具有 Plotly.py 图表的分析应用程序和仪表板。Plotly Express 产生的对象与 Dash 100%兼容,只需将它们直接传递到 dash_core_components.Graph,如下所示: dcc.Graph(figure = px.scatter(...))。 这是一个非常简单的 50行 Dash 应用程序的示例,它使用 px 生成其中的图表:

这个 50 行的 Dash 应用程序使用 Plotly Express 生成用于浏览数据集的 UI 。

可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与 探索 的范畴。

Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。 不幸的是,这种控制的代价是冗长的:有时可能需要多行 Python 代码才能用 Plotly.py 生成图表。

我们使用 Plotly Express 的主要目标是使 Plotly.py 更容易用于 探索 和快速迭代。

我们想要构建一个库,它做出了不同的权衡:在可视化过程的早期牺牲一些控制措施来换取一个不那么详细的 API,允许你在一行 Python 代码中制作各种各样的图表。 然而,正如我们上面所示,该控件并没有消失:你仍然可以使用底层的 Plotly.py 的 API 来调整和优化用 Plotly Express 制作的图表。

支持这种简洁 API 的主要设计决策之一是所有 Plotly Express 的函数都接受“整洁”的 dataframe 作为输入。 每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column 甚至是 动画帧到数据框(dataframe)中的列。 当您键入 px.scatter(data,x ='col1',y='col2') 时,Plotly Express 会为数据框中的每一行创建一个小符号标记 - 这就是 px.scatter 的作用 - 并将 “col1” 映射到 x 位置(类似于 y 位置)。 这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。

接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框、构面甚至动画帧。 但是,如上所述,如果你的 dataframe 的列被笨拙地命名,你可以告诉 px 用每个函数的 labels 参数替换更好的。

仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等,所有这些都不需要重塑您的数据!

在 API 级别,我们在 px 中投入了大量的工作,以确保所有参数都被命名,以便在键入时最大限度地发现:所有 scatter -类似的函数都以 scatter 开头(例如 scatter_polar, scatter_ternary)所以你可以通过自动补全来发现它们。 我们选择拆分这些不同的散点图函数,因此每个散点图函数都会接受一组定制的关键字参数,特别是它们的坐标系。 也就是说,共享坐标系的函数集(例如 scatter, line & bar,或 scatter_polar, line_polar 和 bar_polar )也有相同的参数,以最大限度地方便学习。 我们还花了很多精力来提出简短而富有表现力的名称,这些名称很好地映射到底层的 Plotly.py 属性,以便于在工作流程中稍后调整到交互的图表中。

最后,Plotly Express 作为一个新的 Python 可视化库,在 Plotly 生态系统下,将会迅速发展。所以不要犹豫,立即开始使用 Plotly Express 吧!