r语言中怎样查看函数源代码

Python015

r语言中怎样查看函数源代码,第1张

在r中看函数源代码:

在R中,代码可以分为如下几个级别:

首先,是你输入了函数对象名称,你可以直接看到代码的,如要获得函数对象fivenum的代码,就只需要在Console中键入函数对象名称fivenum就可以得到如下结果:

function (x, na.rm = TRUE)

{

xna <- is.na(x)

if (na.rm)

x <- x[!xna]

else if (any(xna))

return(rep.int(NA, 5))

x <- sort(x)

n <- length(x)

if (n == 0)

rep.int(NA, 5)

else {

n4 <- floor((n + 3)/2)/2

d <- c(1, n4, (n + 1)/2, n + 1 - n4, n)

0.5 * (x[floor(d)] + x[ceiling(d)])

}

}

<environment: namespace:stats>

从上面的例子可以看出,这类函数对象的代码是最容易看到的,也是我们学习的最好的材料了,而R中最大多数的函数对象是以这种方式出现的。

其次,我们在输入mean这类函数名次的时候,会出现如下结果:

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

这表示函数作者把函数“封”起来了。这个时候我们可以先试一试methods(mean),利用methods函数看看mean这个函数都有哪些类型的,我们得到的结果如下:

[1] mean.data.frame mean.Date mean.defaultmean.difftime mean.POSIXct mean.POSIXlt

其实对此可以有一个简单的理解,虽然不够精确。因为在R中,mean函数可以求得属于不同类型对象的平均值,而不同类型对象平均值的求法还是有一些小小差 异的,比如说求一个向量的平均值和求一个数据框的平均值就有所差异,就要编写多个mean函数,然后“封”起来,以一个统一的mean出现,方便我们使 用。这正好也反映了R有一种类似泛型编程语言的性质。

既然我们已经知道mean中还有这么多种类,我们可以输入mean.default试一试就可以得到:

function (x, trim = 0, na.rm = FALSE, ...)

{

if (!is.numeric(x) &&!is.complex(x) &&!is.logical(x)) {

warning("argument is not numeric or logical: returning NA")

return(as.numeric(NA))

}

if (na.rm)

x <- x[!is.na(x)]

trim <- trim[1]

n <- length(x)

if (trim >0 &&n >0) {

if (is.complex(x))

stop("trimmed means are not defined for complex data")

if (trim >= 0.5)

return(stats::median(x, na.rm = FALSE))

lo <- floor(n * trim) + 1

hi <- n + 1 - lo

x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]

n <- hi - lo + 1

}

.Internal(mean(x))

}

<environment: namespace:base>

同样就可以得到mean.data.frame、mean.Date、mean.difftime、mean.POSIXct、mean.POSIXlt 的具体内容了。值得注意的是,在R中,出现有多个同样近似功能的函数封装为一个函数的时候(这时候在函数中多半会出现类似UseMethod函数使用的情 况),我们不妨先输入mean.default试一试。这种形式的函数在R中一般作为默认的函数表示。

第三,这是一种特殊的情况,有人认为应该和第二种是一类,但是我还是要提出来单独归类。在这种情况也和第二种的原因有些类似,但并不是完全一致。

也许我们大家都很熟悉plot函数了吧,输入函数名plot的时候,我们会得到如下结果:

function (x, y, ...)

{

if (is.null(attr(x, "class")) &&is.function(x)) {

nms <- names(list(...))

if (missing(y))

y <- {

if (!"from" %in% nms)

0

else if (!"to" %in% nms)

1

else if (!"xlim" %in% nms)

NULL

}

if ("ylab" %in% nms)

plot.function(x, y, ...)

else plot.function(x, y, ylab = paste(deparse(substitute(x)),

"(x)"), ...)

}

else UseMethod("plot")

}

<environment: namespace:graphics>

请注意plot函数中也出现了UseMethod这个函数,但是和mean不同的是,前面有相当多的语句用于处理其他一些事情。这个时候,我们也使用methods(plot)来看看,得到如下结果:

plot.acf* plot.data.frame*plot.Date* plot.decomposed.ts* plot.default

plot.dendrogram*plot.densityplot.ecdf plot.factor*plot.formula*

plot.hclust*plot.histogram* plot.HoltWinters* plot.isoreg*plot.lm

plot.medpolish* plot.mlmplot.POSIXct* plot.POSIXlt* plot.ppr*

plot.prcomp*plot.princomp* plot.profile.nls* plot.spec plot.spec.coherency

plot.spec.phase plot.stepfunplot.stl* plot.table* plot.ts

plot.tskernel* plot.TukeyHSD

不看不知道,一看吓一跳,还以为我们输入plot的输出就是函数本身,结果也许不是如此。可能有人已经理解了,其实最后的UseMethod函数实在默认的调用plot.default函数,赶快再看看plot.default函数吧,发现它再调用plot.xy函数,再看看plot.xy函数,再plot.xy函数中调用了一个.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))函数,也许这就是真正起作用的函数了吧。思路基本上就是如此了,是否这个时候您可以获得一些阅读查找R函数内容的乐趣。

除了直接输入FUN.default形式外,还可以使用getS3method(FUN,"default")来获得代码。这样就解决了绝大多数函数代码查看的工作了。

在第二种情况种,我们说了一般可以通过FUN.default获得想要的结果。但是只有称为generic的函数才有这种“特权”。而lm等则没有,不过我们也可以尝试使用methods(lm)来看看结果如何,发现:

[1] lm.fit lm.fit.null lm.influence lm.wfit lm.wfit.null

Warning message:

function 'lm' appears not to be generic in: methods(lm)

出现了警告信息,表示说lm不是泛型函数,但是还是给出了结果lm.fit等,大致上可以看成是和lm相关的系列函数吧。这样子就出现了有趣的局面,比如说既有plot.ts,也有ts.plot。

依照第三种情况,我们发现竟然有的函数用星号标识了的,比如plot.stl*等,当我们输入plot.stl,甚至是plot.stl*的时候都会给出 要么找不到这个对象,要么干脆是代码错误的信息。原来凡是用了*标识的函数,都是隐藏起来的函数,估计是怕被人看见(其实这是玩笑话)!我们要看这些函数 的代码,我们该怎么办呢?其实也很容易,使用功能强大的getAnywhere(FUN),看看这个函数的名称,就可以猜想到它的功能估计是很强大的, Anywhere的内容都可以找到!getAnywhere(plot.stl)的结果如下:

A single object matching 'plot.stl' was found

It was found in the following places

registered S3 method for plot from namespace stats

namespace:stats

with value

function (x, labels = colnames(X), set.pars = list(mar = c(0,

6, 0, 6), oma = c(6, 0, 4, 0), tck = -0.01, mfrow = c(nplot,

1)), main = NULL, range.bars = TRUE, ..., col.range = "light gray")

{

sers <- x$time.series

ncomp <- ncol(sers)

data <- drop(sers %*% rep(1, ncomp))

X <- cbind(data, sers)

colnames(X) <- c("data", colnames(sers))

nplot <- ncomp + 1

if (range.bars)

mx <- min(apply(rx <- apply(X, 2, range), 2, diff))

if (length(set.pars)) {

oldpar <- do.call("par", as.list(names(set.pars)))

on.exit(par(oldpar))

do.call("par", set.pars)

}

for (i in 1:nplot) {

plot(X[, i], type = if (i <nplot)

"l"

else "h", xlab = "", ylab = "", axes = FALSE, ...)

if (range.bars) {

dx <- 1/64 * diff(ux <- par("usr")[1:2])

y <- mean(rx[, i])

rect(ux[2] - dx, y + mx/2, ux[2] - 0.4 * dx, y -

mx/2, col = col.range, xpd = TRUE)

}

if (i == 1 &&!is.null(main))

title(main, line = 2, outer = par("oma")[3] >0)

if (i == nplot)

abline(h = 0)

box()

right <- i%%2 == 0

axis(2, labels = !right)

axis(4, labels = right)

axis(1, labels = i == nplot)

mtext(labels[i], side = 2, 3)

}

mtext("time", side = 1, line = 3)

invisible()

}

<environment: namespace:stats>

注意到前面有一段解释型的语言,描述了我们要找的这个函数放在了什么地方等等。其实对任意我们可以在R中使用的函数,都可以先试一试getAnywhere,看看都有些什么内容。算是一个比较“霸道”的函数。

在上面plot.xy函数中,我们还可以看到.Internal这个函数,类似的也许还可以看到.Primitive、.External、.Call等函数这就和R系统内部工作方式和与外部接口的定义有关了,如果对这些函数有兴趣的话,就要学习组成R系统的源代码了。

最后,如果真的想阅读组成R系统本身的源代码,在各个CRAN中均有下载。你可以得到组成R系统所需要的材料。其中很多C语言(还有就是F)的源代码,均 是精心挑选过的算法,哪怕就是想学从头到尾编写具体的算法,也是学习的好材料。同时,你可以看到R系统内部是如何构成的,理解了这些对于高效使用R有至关 重要的作用。这个范畴的材料就要着重看一看R-Lang和R-inits了。

至此,R中阅读代码的内容就依照我的理解介绍了一下。随后将有一些R代码示例的分析注解、语言本身、R应用的和行业使用的材料翻译和具体例子说明。欢迎大家多多和我交流,一起进步。

输入了函数对象名称,可以直接看到代码的,如要获得函数对象fivenum的代码,就只需要在Console中键入函数对象名称fivenum就可以得到如下结果:

function (x, na.rm = TRUE)

{

xna <- is.na(x)

if (na.rm)

x <- x[!xna]

else if (any(xna))

return(rep.int(NA, 5))

x <- sort(x)

n <- length(x)

if (n == 0)

rep.int(NA, 5)

else {

n4 <- floor((n + 3)/2)/2

d <- c(1, n4, (n + 1)/2, n + 1 - n4, n)

0.5 * (x[floor(d)] + x[ceiling(d)])

}

}

用R语言进行关联分析

关联是两个或多个变量取值之间存在的一类重要的可被发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。

几个基本概念

1. 项集

这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。

2. 关联规则

一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。

关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。

例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。

3. 支持度(Support)

支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:

该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。

设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。

4. 置信度(Confidence)

置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:

这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。

具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。

5. 提升度(lift)

提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:

该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。

R中Apriori算法

算法步骤:

1. 选出满足支持度最小阈值的所有项集,即频繁项集;

2. 从频繁项集中找出满足最小置信度的所有规则。

>library(arules) #加载arules包

>click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)

>rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法

>rules

set of419 rules

>inspect(rules[1:10]) #查看前十条规则

解释

1)library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)

2)click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据

read.transactions(file, format =c("basket", "single"), sep = NULL,

cols = NULL, rm.duplicates =FALSE, encoding = "unknown")

file:文件名,对应click_detail中的“click_detail.txt”

format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。

basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。

文件形式:

item1,item2

item1

item2,item3

读入后:

items

1 {item1,

item2}

2 {item1}

3 {item2,

item3}

single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:

trans1 item1

trans2 item1

trans2 item2

读入后:

items transactionID

1 {item1}trans1

2 {item1,

item2}trans2

sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔

cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item ids

rm.duplicates:是否移除重复项,默认为FALSE

encoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.

3)rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

data:数据

parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)

supp:支持度(support)

conf:置信度(confidence)

maxlen,minlen:每个项集所含项数的最大最小值

target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)

apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。

control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)

补充

通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)

通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)

通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)

Apriori算法

两步法:

1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;

2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。

频繁项集产生所需要的计算开销远大于规则产生所需的计算开销

频繁项集的产生

几个概念:

1, 一个包含K个项的数据集,可能产生2^k个候选集

2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。

3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。

上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。

一个例子(百度到的一个PPT上的):

当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:

代码:

item <- list(

c("bread","milk"),

c("bread","diaper","beer","eggs"),

c("milk","diaper","beer","coke"),

c("bread","milk","diaper","beer"),

c("bread","milk","diaper","coke")

)

names(item) <- paste("tr",c(1:5),sep = "")

item

trans <- as(item,"transactions") #将List转为transactions型

rules = eclat(trans,parameter = list(supp = 0.6,

target ="frequent itemsets"),control = list(sort=1))

inspect(rules) #查看频繁项集

运行后结果:

>inspect(rules)

items support

1{beer,

diaper}0.6

2{diaper,

milk} 0.6

3{bread,

diaper}0.6

4{bread,

milk} 0.6

5{beer} 0.6

6{milk} 0.8

7{bread} 0.8

8{diaper} 0.8

以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。

规则的产生

每个频繁k项集能产生最多2k-2个关联规则

将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值

定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集

Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。