R语言数据分析实例一:离职率分析与建模预测

Python017

R语言数据分析实例一:离职率分析与建模预测,第1张

本文分析利用IBM离职员工数据进行分析。在对离职率的影响因素进行观察的基础至上,建立模型并预测哪些员工更易离职。

一般而言,数据分析分为三个步骤:数据收集与清洗、探索性分析和建模预测。本文的数据集是IBM用于研究员工预测的 模拟数据 ,数据十分完整,无需清洗。因此,本文主要分为三个部分:

通过对IBM离职员工数据实践,本文希望发掘出影响员工流失的因素,并对利用R语言进行数据分析过程进行复习,深化对数据分析工作意义的理解。

IBM离职员工数据集共有35个变量,1470个观测个案。部分需要重点关注的变量如下:

上述变量可以分为三个部分:

载入分析包和数据集

通过描述性统计可以初步观测到:

分析结果:

基于对数据的探索性分析,员工离职有多方面因素的影响,主要有:

1.工作与生活的不平衡——加班、离家远和出差等;

2.工作投入如果不能获得相匹配的回报,员工更倾向离职;

3.优先股认购等福利是员工较为关注的回报形式;

4.年龄、任职过的公司数量的因素也会影响员工离职率;

删除需要的变量:EmployeeCount, EmployeeNumber, Over18, StandardHours

变量重新编码:JobRole, EducationFiled

分析结果表明:

随机森林所得的AUC值为0.5612,小于决策树模型。

GBM模型得到的AUC值为0.5915

对于对于随机森林和GBM的方法,AUC值小于单一决策树模型的AUC值的情况较少见,这显然说明单一的树拟合得更好或者更稳定的情况。(一般需要得到AUC值大于0.75的模型)

当结果分类变量之间的比列是1:10或者更高的时候,通常需要考虑优化模型。本例中,离职变量的比列是1:5左右,但仍然可能是合理的,因为在决策树中看到的主要问题是预测那些实际离开的人(敏感度)。

加权旨在降低少数群体中的错误,这里是离职群体。

向上采样(up-sampling)指从多数类中随机删除实例。

向下采样(down-sampling)指从少数类中复制实例。

分析结果表明:

加权调整的模型表现最好,相比较于单纯的随机森林和GBM模型,AUC值从0.5612上升至0.7803,灵敏度也达到了0.7276。据此,后续将采用加权调整后的模型进行预测。

已经训练出一个表现较好的模型。将其应用于实践时,需要注意以下几个方面:

可以观察到影响员工流失的前5个因素是:

因此,在实践中就需要注意:

本例中对工作投入高、收入低的员工进行预测。

本例分析仍有需要足够完善的地方,还可以往更多更有意义的地方探索:

R语言泊松Poisson回归模型分析案例

这个问题涉及马蹄蟹研究的数据。研究中的每只雌性马蹄蟹都有一只雄性螃蟹贴在她的巢穴中。这项研究调查了影响雌蟹是否有其他男性居住在她附近的因素。被认为影响这一点的解释变量包括雌蟹的颜色(C),脊椎状况(S),体重(Wt)和甲壳宽度(W)。

数据文件:crab.txt。

我们将首先拟合仅具有一个自变量:宽度(W)的泊松回归模型

估计的模型是:$ log( hat { mu_i})$ = -3.30476 + 0.16405W ilog(μi^) = - 3.30476 + 0.16405W

估计的β= 0.164的ASE为0.01997,这是小的,并且该斜率在z值为8.216及其低p值的情况下在统计学上是显着的。

如果我们看一下W对Sa的散点图(见下文),我们可能会怀疑一些异常值

您可以考虑其他类型的残差,影响度量(如我们在线性回归中看到的)以及残差图。

以下是运行R代码其他部分的输出的一部分:

从上面的输出中,我们可以看到预测计数(“拟合”)和线性预测变量的值,即预期计数的对数值。

我们也可以看到,尽管预测是有意义的,但模型并不适合。考虑到剩余偏差统计值为567.88和171 df,p值为零,值/ DF = 567.88 / 171 = 3.321远大于1,因此该模型不适合。缺乏适合可能是由于缺少数据,协变量或过度分散。

更改模型

在上述模型中,我们检测到一个潜在的过分散问题,因为比例因子,例如残差偏差的值/ DF远大于1。

回想一下,过度分散的原因之一是异质性,其中每个协变量组合中的主体仍然差异很大。如果是这样的话,是否违背了Poisson回归模型的泊松模型的假设?

上述R程序的输出:

在这个模型中,随机分量在响应具有相同均值和方差的情况下不再具有泊松分布。根据给定的估计值(例如Pearson X 2 = 3.1822),随机分量的变化(响应)大约是平均值的三倍。

除了过度分散之外,如何忽略其他解释变量?我们可以通过添加其他变量来提高拟合度吗?

我们来比较一下这个输出和只有“W”作为预测的模型。我们将“虚拟变量”引入到模型中,以表示具有4级的颜色变量,其中4级作为参考级别。

此外,如果您运行anova(model.disp),从下面的输出中我们可以看到,在考虑宽度后,颜色几乎没有统计上显着的预测因子。

>anova(model.disp)

Df Deviance Resid。Df Resid。Dev

NULL 172 632.79

W 1 64.913 171 567.88

C1 1 3.130 170 564.75

C2 1 5.400 169 559.35

C3 1 0.004 168 559.34

此模型是否适合数据更好,是否适合过度分散?

R代码的这部分做以下更改:

将此输出的部分与上面的输出相比较,我们将颜色用作分类预测器。我们这样做只是为了记住同一个变量的不同编码会给你不同的拟合和估计值。

现在估计的模型是什么?$ log { hat { mu_i}} $ = -2.520 + 0.1496W - 0.1694C。logμi^ = -2.520 + 0.1496W - 0.1694C。

由于添加协变量没有帮助,过度分散似乎是由于异质性。我们可以用这些数据做些什么吗?

数据分组

我们考虑按宽度分组数据,然后拟合泊松回归模型。这里是按W排序的数据。

数据已分成8个区间,如下面的(分组)数据所示

请注意,“NumCases”是位于特定间隔内的雌性螃蟹的数量,这些雌性螃蟹的宽度由后面限定。“AverWt”是该分组内的平均背宽,“AverSa”是男性卫星总数除以组内的雌蟹总数,“SDSa”和“VarSa”是标准偏差,即“AverSa”的变化。

更改模型

我们还创建了一个变量lcases = log(个案),其中记录了个案数量的对数。这是输出。

模型现在比以前更好还是更差?它显然更适合。例如,剩余偏差统计值的值/ DF现在是1.0861。

残差分析也显示了良好的拟合度。

我们来比较下图中的观察值和拟合值(预测值):

R中的最后两个陈述用于证明我们可以用速率数据的身份链接来拟合泊松回归模型。请注意,该模型不适合分组数据,因为与先前的模型相比,残差偏差统计的值/ DF约为11.649。

predict(model,newdata)

model是你的模型,把新的自变量按照变量名放在一个data frame里(newdata),比如newdata<-data.frame(x1,x2,x3,x4,x5)