R语言计算β多样性指数及分析

Python010

R语言计算β多样性指数及分析,第1张

计算β多样性指数需要用到phyloseq包。它的安装方式不同于简单的install.packages(“phyloseq”)

有两种方法可以安装

1.先安装BiocManager

install.packages("BiocManager")

library("BiocManager")

BiocManager::install("phyloseq")

library("phyloseq")

2.source("https://bioconductor.org/biocLite.R")

biocLite("phyloseq")

#安装phyloseq

library("phyloseq")

安装并加载了phyloseq包后,开始读取数据,前面计算α多样性,用到的是read.table……

qiimedata <- import_qiime(otufilename = "feature-table.taxonomy.txt", mapfilename = "mapping_file.txt", treefilename = "tree.rooted.nwk", refseqfilename = "dna-sequences.fasta")

#读取数据,参数都是文件名,注意加后缀

#otufilename指定out表格,mapfilename指定map文件(分组数据)

#treefilename指定有根进化树文件

#refseqfilename指定代表序列文件

otu<-qiimedata@[email protected]

#从qiimedata里面提取otu

sum_of_otus<-colSums(t(otu))

#t_转置,colsums计算列的和,即计算各个otu检测到的总序列数,为了筛掉一些总序列数过低的otu(可能是测序错误)

sum_of_otus

#查看otu总序列数

selected_otu<-names(sum_of_otus)[sum_of_otus>10]

#获取总序列数大于10的otu id

sub_qiimedata <- prune_taxa(selected_otu, qiimedata)

#筛选总序列数大于10的otu的phyloseq数据

weighted_unifrac<-distance(sub_qiimedata,method = 'wunifrac')

#计算样本间加权unifrac

unweighted_unifrac<-distance(sub_qiimedata,method = 'unifrac')

#计算样本间非加权unifrac

bray_curtis <- distance(sub_qiimedata, method='bray')

write.table(as.matrix(bray_curtis),"bray_curtis.txt",sep = '\t',quote = FALSE,col.names = NA)

#保存距离矩阵

#计算样本间Bray-Curtis距离矩阵,method 可选" wunifrac ", " unifrac " ,"jaccard"等

pcoa_of_bray_curtis<-ordinate(physeq=sub_qiimedata,distance = 'bray',method = "PCoA")

#基于Bray-Curtis距离矩阵的PCoA排序分析

p<-plot_ordination(sub_qiimedata, pcoa_of_bray_curtis, type="samples", color="Group1",shape = "Group1")

#将PCoA排序分析结果可视化

library("ggplot2")

p<-p+ scale_colour_manual(values=c("#DC143C","#808000","#00CED1")) + geom_point(size=2) +ggtitle("PCoA of Bray-Curtis distance")+theme(text = element_text(size = 15))

#修改图形大小,ggtitle加标题,stat_ellipse加椭圆

#用scale_colour_manual(values=c())自定义颜色,可查颜色的16进制对照表

p

nmds_of_bray_curtis<-ordinate(physeq=sub_qiimedata,distance = 'bray',method = "NMDS")

#基于Bray-Curtis距离矩阵的NMDS排序分析

p1<-plot_ordination(qiimedata, nmds_of_bray_curtis, type="samples", color="Group1")

#将NMDS排序分析结果可视化

# color=“Group1”指定不同分组的点染不同颜色

p1

p1<-p1+ geom_point(size=3) +ggtitle("NMDS of Bray-Curtis distance") + stat_ellipse()+theme(text = element_text(size = 15))

#对图片进行适当修饰, stat_ellipse()加椭圆, ggtitle()加标题

ggsave(plot = p1,“nmds_of_bary_curtis.pdf",dpi = 300,width

PCoA中的两个点距离,接近β多样性指数

PCA(Principal Components Analysis)即主成分分析,也称主分量分析或主成分回归分析法,首先利用线性变换,将数据变换到一个新的坐标系统中然后再利用降维的思想,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上。这种降维的思想首先减少数据集的维数,同时还保持数据集的对方差贡献最大的特征,最终使数据直观呈现在二维坐标系。

PCoA(Principal Co-ordinates Analysis)分析即主坐标分析,可呈现研究数据相似性或差异性的可视化坐标,是一种非约束性的数据降维分析方法,可用来研究样本群落组成的相似性或相异性。它与PCA类似,通过一系列的特征值和特征向量进行排序后,选择主要排在前几位的特征值,找到距离矩阵中最主要的坐标,结果是数据矩阵的一个旋转,它没有改变样本点之间的相互位置关系,只是改变了坐标系统。两者的区别为PCA是基于样本的相似系数矩阵(如欧式距离)来寻找主成分,而PCoA是基于距离矩阵(欧式距离以外的其他距离)来寻找主坐标。

NMDS图中两个点的距离的排序,接近β多样性指数的排序

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表 data.frame:数据框

c:连接为向量或列表 sequence:等差序列 rep:重复

length:求长度 subset:求子集 seq,from:to, NA:缺失值 NULL:空对象 sort,order,unique,rev:排序 unlist:展平列表 attr,attributes:对象属性

mode,typeof:对象存储模式与类型 names:对象的名字属性

character:字符型向量 nchar:字符数 substr:取子串 format,formatC:把对象用格式转换为字符串 paste,strsplit:连接或拆分

charmatch,pmatch:字符串匹配 grep,sub,gsub:模式匹配与替换

complex,Re,Im,Mod,Arg,Conj:复数函数

factor:因子 codes:因子的编码 levels:因子的各水平的名字 nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子

table:交叉频数表 split:按因子分组 aggregate:计算各数据子集的概括统计量 tapply:对“不规则”数组应用函数

+, -, *, /, ^, %%, %/%:四则运算 ceiling,floor,round,signif,trunc,zapsmall:舍入 max,min,pmax,pmin:最大最小值

range:最大值和最小值 sum,prod:向量元素和,积 cumsum,cumprod,cummax,cummin:累加、累乘 sort:排序 approx和approx fun:插值 diff:差分 sign:符号函数

abs,sqrt:绝对值,平方根 log, exp, log10, log2:对数与指数函数 sin,cos,tan,asin,acos,atan,atan2:三角函数

sinh,cosh,tanh,asinh,acosh,atanh:双曲函数

beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数

fft,mvfft,convolve:富利叶变换及卷积 polyroot:多项式求根 poly:正交多项式 spline,splinefun:样条差值

besselI,besselK,besselJ,besselY,gammaCody:Bessel函数 deriv:简单表达式的符号微分或算法微分

array:建立数组 matrix:生成矩阵 data.matrix:把数据框转换为数值型矩阵 lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量 t:矩阵转置

cbind:把列合并为矩阵 rbind:把行合并为矩阵 diag:矩阵对角元素向量或生成对角矩阵 aperm:数组转置 nrow, ncol:计算数组的行数和列数 dim:对象的维向量

dimnames:对象的维名 row/colnames:行名或列名 %*%:矩阵乘法 crossprod:矩阵交叉乘积(内积) outer:数组外积 kronecker:数组的Kronecker积

apply:对数组的某些维应用函数 tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量 aggregate:计算数据子集的概括统计量 scale:矩阵标准化

matplot:对矩阵各列绘图 cor:相关阵或协差阵 Contrast:对照矩阵 row:矩阵的行下标集 col:求列下标集

solve:解线性方程组或求逆 eigen:矩阵的特征值分解 svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组 chol:Choleski分解

qr:矩阵的QR分解 chol2inv:由Choleski分解求逆

<,>,<=,>=,==,!=:比较运算符 !,&,&&,|,||,xor():逻辑运算符 logical:生成逻辑向量 all,any:逻辑向量都为真或存在真

ifelse():二者择一 match,%in%:查找 unique:找出互不相同的元素 which:找到真值下标集合 duplicated:找到重复元素

optimize,uniroot,polyroot:一维优化与求根

if,else,ifelse,switch:分支 for,while,repeat,break,next:循环 apply,lapply,sapply,tapply,sweep:替代循环的函数。

function:函数定义 source:调用文件 call:函数调用 .C,.Fortran:调用C或者Fortran子程序的动态链接库。 Recall:递归调用

browser,debug,trace,traceback:程序调试 options:指定系统参数 missing:判断虚参是否有对应实参 nargs:参数个数 stop:终止函数执行

on.exit:指定退出时执行 eval,expression:表达式计算 system.time:表达式计算计时 invisible:使变量不显示 menu:选择菜单(字符列表菜单)

其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,

is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine

cat,print:显示对象 sink:输出转向到指定文件 dump,save,dput,write:输出对象 scan,read.table,load,dget:读入

ls,objects:显示对象列表 rm, remove:删除对象 q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。

options:系统选项 ?,help,help.start,apropos:帮助功能 data:列出数据集分析

每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数函数,r――随机数函数。

比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:

norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心) unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔

lnorm:对数正态,logis:逻辑分布,cauchy:柯西, binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松 signrank:符号秩,

wilcox:秩和,tukey:学生化极差

sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。

R中已实现的有chisq.test,prop.test,t.test。

cor,cov.wt,var:协方差阵及相关阵计算 biplot,biplot.princomp:多元数据biplot图 cancor:典则相关 princomp:主成分分析 hclust:谱系聚类

kmeans:k-均值聚类 cmdscale:经典多维标度 其它有dist,mahalanobis,cov.rob。

ts:时间序列对象 diff:计算差分 time:时间序列的采样时间 window:时间窗

lm,glm,aov:线性模型、广义线性模型、方差

1、RMSE(均方根误差)即标准误差:

假如数据在A1:Z1

标准方差用函数=STDEV(A1:Z1)

方差用函数=VARA(A1:Z1)

2、MRE(平均相对误差)

Excel/函数/统计/STDEV(Sd)

计算出标准偏差Sd值,然后除以平均数再×100%就可以了。

为了找到均方根误差,我们首先需要找到残差(也称为误差,我们需要对这些值均方根),然后需要计算这些残差的均方根。因此,如果我们有一个线性回归模型对象说M,则均方根误差可以找到为sqrt(mean(M $residuals ^ 2))。

示例

x1<-rnorm(500,50,5)

y1<-rnorm(500,50,2)

M1<-lm(y1~x1)

summary(M1)

输出结果

Call:

lm(formula = y1 ~ x1)

Residuals:

Min 1QMedian3QMax

-5.6621 -1.2257 -0.0272 1.4151 6.6421

Coefficients:

EstimateStd.Errort value Pr(>|t|)

(Intercept) 50.178943 0.915473 54.812 <2e-16 ***

x1 -0.002153 0.018241 -0.118 0.906

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.966 on 498 degrees of freedom

Multiple R-squared: 2.798e-05, Adjusted R-squared: -0.00198

F-statistic: 0.01393 on 1 and 498 DF, p-value: 0.9061

从模型M1中找到均方根误差-

示例

sqrt(mean(M1$residuals^2))

输出结果

[1] 1.961622

示例

x2<-rnorm(5000,125,21)

y2<-rnorm(5000,137,10)

M2<-lm(y2~x2)

summary(M2)

输出结果

Call:

lm(formula = y2 ~ x2)

Residuals:

Min 1QMedian3QMax

-37.425 -7.005 -0.231 6.836 36.627

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 138.683501 0.851247 162.918 <2e-16 ***

x2 -0.014386 0.006735 -2.136 0.0327 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.06 on 4998 degrees of freedom

Multiple R-squared: 0.0009121, Adjusted R-squared: 0.0007122

F-statistic: 4.563 on 1 and 4998 DF, p-value: 0.03272

从模型M2中找到均方根误差:

示例

sqrt(mean(M2$residuals^2))

输出结果

[1] 10.05584

示例

x37<-rpois(500,5)

y3<-rpois(500,10)

M3<-lm(y3~x3)

summary(M3)

输出结果

Call:

lm(formula = y3 ~ x3)

Residuals:

Min 1QMedian3QMax

-7.9004 -1.9928 -0.2155 2.1921 9.3770

Coefficients:

EstimateStd.Error t value Pr(>|t|)

(Intercept) 10.17770 0.3233031.481<2e-16 ***

x3 -0.09244 0.06145-1.5040.133

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.027 on 498 degrees of freedom

Multiple R-squared: 0.004524, Adjusted R-squared: 0.002525

F-statistic: 2.263 on 1 and 498 DF, p-value: 0.1331

从模型M3查找均方根误差-

示例

sqrt(mean(M3$residuals^2))

输出结果

[1] 3.020734

示例

x4<-runif(50000,5,10)

y4<-runif(50000,2,10)

M4<-lm(y4~x4)

summary(M4)

输出结果

Call:

lm(formula = y4 ~ x4)

Residuals:

Min1Q Median 3QMax

-4.0007 -1.9934 -0.0063 1.9956 3.9995

Coefficients:

EstimateStd.Error t value Pr(>|t|)

(Intercept) 5.9994268 0.0546751 109.729 <2e-16 ***

x40.0001572 0.0071579 0.0220.982

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.309 on 49998 degrees of freedom

Multiple R-squared: 9.646e-09, Adjusted R-squared: -1.999e-05

F-statistic: 0.0004823 on 1 and 49998 DF, p-value: 0.9825

从模型M4找到均方根误差-

示例

sqrt(mean(M4$residuals^2))

输出结果

[1] 2.308586

示例

x5<-sample(5001:9999,100000,replace=TRUE)

y5<-sample(1000:9999,100000,replace=TRUE)

M5<-lm(y5~x5)

summary(M5)

输出结果

Call:

lm(formula = y5 ~ x5)

Residuals:

Min 1QMedian 3Q Max

-4495 -2242-42230 4512

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.504e+03 4.342e+01 126.765 <2e-16 ***

x5-1.891e-03 5.688e-03 -0.333 0.74

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2594 on 99998 degrees of freedom

Multiple R-squared: 1.106e-06, Adjusted R-squared: -8.895e-06

F-statistic: 0.1106 on 1 and 99998 DF, p-value: 0.7395

从模型M5中找到均方根误差<

示例

sqrt(mean(M5$residuals^2))

输出结果

[1] 2593.709