如何使用R计算香农熵?

Python017

如何使用R计算香农熵?,第1张

1.1948 年,香农提出了“ 信息熵 ”(shāng);

2.信息量的度量就等于不确定性的多少。即:要搞懂一个非常非常不确定(gaoleng)的女孩(或是说我们一无所知的女神),就需要了解大量的信息(喜欢吃啥,衣品,喜欢的偶像)。相反,如果我们对某件事已经有了较多的了解(女闺蜜/青梅竹马的),我们不需要太多的信息就能把它搞清楚。(我尽力了~)

library(entropy)

因为我的数据集有683个基因,所以每一行计算香农熵共683次

y=rep(0,683)

for (i in 1:683){ y[i]=entropy(forentropy[i,],method=c("CS"))}

这时候已经变成是你想要的数据了~

write.table(y, file ="CS_Entropy.txt", sep =",", row.names =FALSE, col.names =FALSE)

就是Excel打开这个香农熵值的表格,复制黏贴到原来的Excel表格中(高端操作就是用cbind到原来的数据集中)

能够解决问题的方法,就是好方法~

这个操作,其实基本上可以用于对任何“感兴趣”函数,对自己的数据集“操作”一下~

不打赏,不点赞,你们还想不想我写了,呜呜呜~~~

1.百度百科香农熵:https://baike.baidu.com/item/香农熵;

一般地, TOPSIS综合评价法 主要包含两个步骤:计算权重和计算相对接近度。如需详细了解 TOPSIS综合评价法 的原理和方法,请自行百度,网上有许多非常详尽的原理说明和案例讲解。

根据熵权法确定各个指标的权重;计算各指标信息熵,指标的信息熵越小,则该指标表达信息的不确定性小,在综合评价中对决策的帮助更大,即应该有较大的权重。熵权法是一种客观的赋予权重的方法,它通过各个指标所提供的信息不确定性来确定各指标的权重

根据权重加权规范化指标属性矩阵后,确定正理想方案Amax和负理想方案 Amin,计算各备选方案与Amax 、Amin的距离,以评估与正负理想方案的接近程度,根据相对接近度确定优先次序。其中计算距离一般使用欧式距离。

按照惯例,导入需要使用的包 data.table 、 plyr 。然后载入使用的数据,我们简单看一下案例数据情况。

其中的字段target即为目标字段,我们需要对其含有的8个方案(A~H)进行综合评价排序,选择其中的最优方案。该数据集中的指标均为正向指标。正向指标表示指标的数值越高越好,负向指标则表示指标的数值越低越好,这决定了该指标在进行权重计算时的处理方式。

计算权重的第一步是计算各个指标的熵值,由于我们用到的指标均是正向指标,所以选择自定义函数 entropy_positive 即可。如果指标既存在正向指标又存在负向指标,则可分开进行计算。自定义函数情况如下:

调用函数并完成权重的计算,x1~x8的权重依次为:11.10%、6.61%、28.19%、7.08%、11.88%、8.11%、11.94%、15.09%,计算过程如下:

在将指标向量规范化后,利用熵值法得到的权重计算得到加权标准化矩阵,然后提取正理想方案和负理想方案并计算出各个方案距离正负理想方案的距离,最终根据计算得到距离比值进行排序。具体计算过程如下:

至此,我们就完成了用 TOPSIS综合评价法 进行多对象多指标的最优对象选择,输出的结果如下,显然在这八个方案中,方案A为最优方案。

是一个预测模型,分为回归决策树和分类决策树,根据已知样本训练出一个树模型,从而根据该模型对新样本因变量进行预测,得到预测值或预测的分类

从根节点到叶节点的一条路径就对应着一条规则.整棵决策树就对应着一组表达式规则。叶节点就代表该规则下得到的预测值。如下图决策树模型则是根据房产、结婚、月收入三个属性得到是否可以偿还贷款的规则。

核心是如何从众多属性中挑选出具有代表性的属性作为决策树的分支节点。

最基本的有三种度量方法来选择属性

1. 信息增益(ID3算法)

信息熵

一个信源发送出什么符号是不确定的,衡量它可以根据其出现的概率来度量。概率大,出现机会多,不确定性小;反之不确定性就大。不确定性函数f是概率P的 减函数 。两个独立符号所产生的不确定性应等于各自不确定性之和,即f(P1,P2)=f(P1)+f(P2),这称为可加性。同时满足这两个条件的函数f是对数函数,即

在信源中,考虑的不是某一单个符号发生的不确定性,而是要考虑这个信源所有可能发生情况的平均不确定性。因此,信息熵被定义为

决策树分类过程

2、增益率(C4.5算法)

由于信息增益的缺点是:倾向于选择具有大量值的属性,因为具有大量值的属性每个属性对应数据量少,倾向于具有较高的信息纯度。因此增益率使用【信息增益/以该属性代替的系统熵(类似于前面第一步将play换为该属性计算的系统熵】这个比率,试图克服这种缺点。

g(D,A)代表D数据集A属性的信息增益,

3. 基尼指数(CART算法)

基尼指数:

表示在样本集合中一个随机选中的样本被分错的概率。越小表示集合中被选中的样本被分错的概率越小,也就是说集合的纯度越高。

假设集合中有K个类别,则:

说明:

1. pk表示选中的样本属于k类别的概率,则这个样本被分错的概率是(1-pk)

2. 样本集合中有K个类别,一个随机选中的样本可以属于这k个类别中的任意一个,因而对类别就加和

3. 当为二分类是,Gini(P) = 2p(1-p)

基尼指数是将属性A做二元划分,所以得到的是二叉树。当为离散属性时,则会将离散属性的类别两两组合,计算基尼指数。

举个例子:

如上面的特征Temperature,此特征有三个特征取值: “Hot”,“Mild”, “Cool”,

当使用“学历”这个特征对样本集合D进行划分时,划分值分别有三个,因而有三种划分的可能集合,划分后的子集如下:

对于上述的每一种划分,都可以计算出基于 划分特征= 某个特征值 将样本集合D划分为两个子集的纯度:

决策数分类过程

先剪枝 :提前停止树的构建对树剪枝,构造树时,利用信息增益、统计显著性等,当一个节点的划分导致低于上述度量的预定义阈值时,则停止进一步划分。但阈值的确定比较困难。

后剪枝 :更为常用,先得到完全生长的树,再自底向上,用最下面的节点的树叶代替该节点

CART使用代价复杂度剪枝算法 :计算每个节点剪枝后与剪枝前的代价复杂度,如果剪去该节点,代价复杂度较小(复杂度是树的结点与树的错误率也就是误分类比率的函数),则剪去。

C4.5采用悲观剪枝 :类似代价复杂度,但CART是利用剪枝集评估代价复杂度,C4.5是采用训练集加上一个惩罚评估错误率

决策树的可伸缩性

ID3\C4.5\CART都是为较小的数据集设计,都限制训练元祖停留再内存中,为了解决可伸缩性,提出了其它算法如

RainForest(雨林):对每个属性维护一个AVC集,描述该结点的训练元组,所以只要将AVC集放在内存即可

BOAT自助乐观算法:利用统计学,创造给定训练数据的较小样本,每个样本构造一个树,导致多颗树,再利用它们构造1颗新树。优点是可以增量的更新,当插入或删除数据,只需决策树更新,而不用重新构造。

决策树的可视化挖掘

PBC系统可允许用户指定多个分裂点,导致多个分支,传统决策树算法数值属性都是二元划分。并且可以实现交互地构建树。

rpart是采用cart算法,连续型“anova”离散型“class”

2)进行剪枝的函数:prune()

3)计算MAE评估回归树模型误差,这里将样本划分成了训练集和测试集,testdata为测试集

rt.mae为根据训练集得到的决策树模型对测试集因变量预测的结果与测试集因变量实际值得到平均绝对误差