《R语言实战》自学笔记69-重抽样和自助法

Python016

《R语言实战》自学笔记69-重抽样和自助法,第1张

数据准备

许多实际情况中统计假设(假定观测数据抽样自正态分布或者其他性质较好的理论分布)并不一定满足,比如数据抽样于未知或混合分布、样本量过小、存在离群点、基于理论分布设计合适的统计检验过于复杂且数学上难以处理等情况,这时基于随机化和重抽样的统计方法就可派上用场。

置换检验的定义

置换检验(Permutation test),也称随机化检验或重随机化检验,是Fisher于20世纪30年代提出的一种基于大量计算(computationally intensive),利用样本数据的全(或随机)排列,进行统计推断的方法,因其对总体分布自由,应用较为广泛,特别适用于总体分布未知的小样本资料,以及某些难以用常规方法分析资料的假设检验问题。

置换检验的原理

1、提出原假设,比如XX处理后结果没有变化

2、计算统计量,如两组的均值之差,记作t0

3、将所有样本放在一起,然后随机排序进行分组,再计算其统计量t1

4、重复第3步骤,直至所有排序可能性都齐全(比如有A组有n样本,B组有m样本,则总重复次数相当于从n+m中随机抽取n个的次数),得到一系列的统计量(t1-tn)

5、最后将这些统计量按照从小到大排序,构成抽样分布,再看t0是否落在分布的置信区间内(如95%置信区间),这时候可计算一个P值(如果抽样总体1000次统计量中大于t0的有10个,则估计的P值为10/1000=0.01),落在置信区间外则拒绝原假设

6、如果第3步骤是将所有可能性都计算了的话,则是精确检验;如果只取了计算了部分组合,则是近似结果,这时一般用蒙特卡罗模拟(Monte Carlo simulation)的方法进行置换检验

7、置换检验和参数检验都计算了统计量,但是前者是跟置换观测数据后获得的经验分布进行比较,后者则是跟理论分布进行比较。

请牢记:置换检验都是使用伪随机数来从所有可能的排列组合中进行抽样(当做近似检验时)。因此,每次检验的结果都有所不同。

coin包提供了一个进行置换检验的一般性框架。通过该包,你可以回答如下问题。

响应值与组的分配独立吗?

两个数值变量独立吗?

两个类别型变量独立吗?

表12-2列出来的每个函数都是如下形式:

function_name(formula, data, distribution=)

其中:

 formula描述的是要检验变量间的关系。示例可参见表12-2;

 data是一个数据框;

 distribution指定经验分布在零假设条件下的形式,可能值有exact,asymptotic和

approximate。

若distribution = "exact",那么在零假设条件下,分布的计算是精确的(即依据所有可能的排列组合)。当然,也可以根据它的渐进分布(distribution = "asymptotic")或蒙特卡洛重抽样(distribution = "approxiamate(B = #)")来做近似计算,其中#指所需重复的次数。

distribution = "exact"当前仅可用于两样本问题。

传统t检验表明存在显著性差异(p <0.05),而精确检验却表明差异并不显著(p >0.072)。

第7章我用自己的数据进行了t检验,对比一下传统t检验和置换检验,结果如下:

两种检验方式下结果都是显著的

Wilcoxon-Mann-Whitney U检验

coin包规定所有的类别型变量都必须以因子形式编码。

wilcox.test()默认计算的也是精确分布。

K样本检验的置换检验

通过chisq_test()或cmh_test()函数,我们可用置换检验判断两类别型变量的独立性。 当数据可根据第三个类别型变量进行分层时,需要使用后一个函数。若变量都是有序型,可使用lbl_test()函数来检验是否存在线性趋势。

卡方独立性检验

卡方独立性检验的置换检验

你可能会有疑问,为什么需要把变量Improved从一个有序因子变成一个分类因子?(好问题!)这是因为,如果你用有序因子,coin()将会生成一个线性与线性趋势检验,而不是卡方检验。

结果解读:两种检验下p值都是小于0.05,说明Treatment和Improved之间相互不独立

自己数据的演示

结果解读:p值均为1,表明nitrogen和variety相互独立。

spearman_test()函数提供了两数值变量的独立性置换检验。

当处于不同组的观测已经被分配得当,或者使用了重复测量时,样本相关检验便可派上用场。

对于两配对组的置换检验,可使用wilcoxsign_test()函数;多于两组时,使用friedman_test()函数。

自己数据演示

lmPerm包可做线性模型的置换检验。比如lmp()和aovp()函数即lm()和aov()函数的修改版,能够进行置换检验,而非正态理论检验。

lmp()和aovp()函数的参数与lm()和aov()函数类似,只额外添加了perm =参数。

perm =选项的可选值有"Exact"、"Prob"或"SPR"。Exact根据所有可能的排列组合生成精确检验。Prob从所有可能的排列中不断抽样,直至估计的标准差在估计的p值0.1之下,判停准则由可选的Ca参数控制。SPR使用贯序概率比检验来判断何时停止抽样。注意,若观测数大于10,perm = "Exact"将自动默认转为perm = "Prob",因为精确检验只适用于小样本问题。

简单线性回归的置换检验

R语言实战的例子:

多项式回归的置换检验

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

当两种方法所得结果不一致时,你需要更加谨慎地审视数据,这很可能是因为违反了正态性假设或者存在离群点。

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

R语言实战的例子:

自己数据集的例子:

值得注意的是,当将aovp()应用到方差分析设计中时,它默认使用唯一平方和法(SAS也称为类型III平方和)。每种效应都会依据其他效应做相应调整。R中默认的参数化方差分析设计使用的是序贯平方和(SAS是类型I平方和)。每种效应依据模型中先出现的效应做相应调整。对于平衡设计,两种方法结果相同,但是对于每个单元格观测数不同的不平衡设计,两种方法结果则不同。不平衡性越大,结果分歧越大。若在aovp()函数中设定seqs = TRUE,可以生成你想要的序贯平方和。

你可能已经注意到,基于正态理论的检验与上面置换检验的结果非常接近。在这些问题中数据表现非常好,两种方法结果的一致性也验证了正态理论方法适用于上述示例。

当然,置换检验真正发挥功用的地方是处理非正态数据(如分布偏倚很大)、存在离群点、样本很小或无法做参数检验等情况。不过,如果初始样本对感兴趣的总体情况代表性很差,即使是置换检验也无法提高推断效果。

置换检验主要用于生成检验零假设的p值,它有助于回答“效应是否存在”这样的问题。不过,置换方法对于获取置信区间和估计测量精度是比较困难的。幸运的是,这正是自助法大显神通的地方。

所谓自助法,即从初始样本重复随机替换抽样,生成一个或一系列待检验统计量的经验分布。 无需假设一个特定的理论分布,便可生成统计量的置信区间,并能检验统计假设。

倘若你假设均值的样本分布不是正态分布,该怎么办呢?可使用自助法。

(1)从样本中随机选择10个观测,抽样后再放回。有些观测可能会被选择多次,有些可能一直都不会被选中。

(2)计算并记录样本均值。

(3)重复1和2一千次。

(4)将1000个样本均值从小到大排序。

(5)找出样本均值2.5%和97.5%的分位点。此时即初始位置和最末位置的第25个数,它们就限定了95%的置信区间。

boot包扩展了自助法和重抽样的相关用途。你可以对一个统计量(如中位数)或一个统计量向量(如一列回归系数)使用自助法。

一般来说,自助法有三个主要步骤。

(1)写一个能返回待研究统计量值的函数。如果只有单个统计量(如中位数),函数应该返回一个数值;如果有一列统计量(如一列回归系数),函数应该返回一个向量。

(2)为生成R中自助法所需的有效统计量重复数,使用boot()函数对上面所写的函数进行处理。

(3)使用boot.ci()函数获取第(2)步生成的统计量的置信区间。

主要的自助法函数是boot(),它的格式为:

bootobject <- boot(data=, statistic=, R=, ...)

参数见下表:

boot()函数调用统计量函数R次,每次都从整数1:nrow(data)中生成一列有放回的随机指标,这些指标被统计量函数用来选择样本。统计量将根据所选样本进行计算,结果存储在bootobject中。

你可以用bootobject t0和bootobject t来获取这些元素。

一旦生成了自助样本,可通过print()和plot()来检查结果。如果结果看起来还算合理, 使用boot.ci()函数获取统计量的置信区间。格式如下:

boot.ci(bootobject, conf=, type= )

type参数设定了获取置信区间的方法。perc方法(分位数)展示的是样本均值,bca将根据偏差对区间做简单调整。

回归的R平方值

1000次自助抽样

输出结果

结果可视化

95%的置信区间获取

回归系数向量函数

自助抽样1000次

获得车重和发动机排量95%的置信区间

置换检验和自助法并不是万能的,它们无法将烂数据转化为好数据。当初始样本对于总体情况的代表性不佳,或者样本量过小而无法准确地反映总体情况,这些方法也是爱莫能助。

参考资料:

R语言下进行分层卡方检验方法和过程如下:t.test t检验wilcox.test wilcox检验prop.test binom.test 贝努力试验检验chisq.test 卡方检验fish.test fisher精确检验ks.test科尔莫哥罗夫-斯米尔诺夫检验shapiro.testshapio-wilk正态分布检验pp.test. phillips-perron检验quada.test quade检验friedman.test friedman秩和检验R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

数据科学 怎样进行大数据的入门级学习?

数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。

但从狭义上来看,我认为数据科学就是解决三个问题:

1. data pre-processing(数据预处理)

2. data interpretation;(数据解读)

3.data modeling and analysis.(数据建模与分析)

这也就是我们做数据工作的三个大步骤:

1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;

2、我们想看看数据“长什么样”,有什么特点和规律;

3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。

这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。

这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。

R programming

如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:

R in action:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的问题集(Newest ‘r’ Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。

Data analysis and graphics using R:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。

但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:

Modern applied statistics with S:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)

Data manipulation with R:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。

R Graphics Cookbook:想用R做可视化,就用这本书吧。150多个recipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。

An introduction to statistical learning with application in R:这本书算是著名的the element of statistical learning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。

A handbook of statistical analysis using R:这本书内容同样非常扎实,很多统计学的学生就是用这本书来学习用R来进行统计建模的。

Python

Think Python,Think Stats,Think Bayes:这是Allen B. Downey写的著名的Think X series三大卷。其实是三本精致的小册子,如果想快速地掌握Python在统计方面的操作,好好阅读这三本书,认真做习题,答案链接在书里有。这三本书学通了,就可以上手用Python进行基本的统计建模了。

Python For Data Analysis: 作者是pandas的主要开发者,也正是Pandas使Python能够像R一样拥有dataframe的功能,能够处理结构比较复杂的数据。这本书其实analysis讲得不多,说成数据处理应该更合适。掌握了这本书,处理各种糟心的数据就问题不大了。

Introduction to Python for Econometrics, Statistics and Data Analysis:这本书第一章就告诉你要安装Numpy, Scipy, Matplotlib, Pandas, IPython等等。然后接下来的十好几章就是逐一介绍这几个库该怎么用。很全面,但读起来比较枯燥,可以用来当工具书。

Practical Data Analysis: 这本书挺奇葩,貌似很畅销,但作者把内容安排得东一榔头西一棒子,什么都讲一点,但一个都没讲透。这本书可以作为我们学习数据分析的一个索引,看到哪块内容有意思,就顺着它这个藤去摸更多的瓜。

Python Data Visualization Cookbook: 用Python做可视化的教材肯定不少,我看过的也就这一本,觉得还不错。其实这类书差别都不会很大,咬住一本啃下来就是王道

Exploratory Data Analysis 和 Data Visualization

Exploratory Data Analysis:John Tukey写于1977年的经典老教材,是这一领域的开山之作。如今EDA已经是统计学里的重要一支,但当时还是有很多人对他的工作不屑一顾。可他爱数据,坚信数据可以以一种出人意料的方式呈现出来。正是他的努力,让数据可视化成为一门无比迷人的技术。但这本书不推荐阅读了,内容略过时。要想完整地了解EDA,推荐下一本:

Exploratory Data Analysis with MATLAB:这本书虽然标题带了个MATLAB,但实际上内容几乎没怎么讲MATLAB,只是每讲一个方法的时候就列出对应的MATALB函数。这本书的重要之处在于,这是我读过的讲EDA最系统的一本书,除了对visualization有不输于John Tucky的讲解外,对于高维的数据集,通过怎样的方法才能让我们从中找到潜在的pattern,这本书也做了详尽的讲解。全书所以案例都有对应的MATALB代码,而且还提供了GUI(图形用户界面)。所以这本书学起来还是相当轻松愉悦的。

Visualize This:中译本叫“鲜活的数据”,作者是个“超级数据迷”,建立了一个叫http://flowingdata.com的网页展示他的数据可视化作品,这本书告诉你该选择什么样的可视化工具,然后告诉你怎样visualize关系型数据、时间序列、空间数据等,最后你就可以用数据讲故事了。如果你只想感受一下数据可视化是个什么,可以直接点开下面这个链接感受下吧!A tour through the visualization zoo(A Tour Through the Visualization Zoo)

Machine Learning &Data Mining

这一块就不多说了,不是因为它不重要,而是因为它太太太重要。所以这一部分就推两本书,都是”世界名著“,都比较难读,需要一点点地啃。这两本书拿下,基本就算是登堂入室了。其实作为机器学习的延伸和深化,概率图模型(PGM)和深度学习(deep learning)同样值得研究,特别是后者现在简直火得不得了。但PGM偏难,啃K.Daphne那本大作实在太烧脑,也没必要,而且在数据领域的应用也不算很广。deep learning目前工业界的步子迈得比学术界的大,各个domain的应用如火如荼,但要有公认的好教材问世则还需时日,所以PGM和deep learning这两块就不荐书了。

The Element of Statistical Learning:要学机器学习,如果让我只推荐一本书,我就推荐这本巨著。Hastie、Tibshirani、Friedman这三位大牛写书写得太用心了,大厦建得够高够大,结构也非常严谨,而且很有前瞻性,纳入了很多前沿的内容,而不仅仅是一部综述性的教材。(图表也做得非常漂亮,应该是用R语言的ggplot2做的。)这本书注重讲解模型和算法本身,所以需要具备比较扎实的数理基础,啃起这本书来才不会太吃力。事实上掌握模型和算法的原理非常重要。机器学习(统计学习)的库现在已经非常丰富,即使你没有完全搞懂某个模型或算法的原理和过程,只要会用那几个库,机器学习也能做得下去。但你会发现你把数据代进去,效果永远都不好。但是,当你透彻地理解了模型和算法本身,你再调用那几个库的时候,心情是完全不一样的,效果也不一样。

Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 数据挖掘的教材汗牛充栋,之所以推荐这本韩家炜爷爷的,是因为虽然他这本书的出发点是应用,但原理上的内容也一点没有落下,内容非常完整。而且紧跟时代,更新的很快,我看过的是第二版,就已经加进去了social network analysis这种当时的前沿内容。现在已经有第三版了,我还没看过,但应该也加入了不少新内容。其实这本书并不难读,只是篇幅较长,啃起来比较耗时。

其实这两本书里单拎出来一块内容可能又是几本书的节奏,比如bayesian方法,再拿出两三本书来讲也不为过,我个人用到的比较多,而且也确实有不少好书。但并非是所有data scientist都要用到,所以这一块就不再细说。

还有一些印象比较深刻的书:

Big Data Glossary: 主要讲解大数据处理技术及工具,内容涵盖了NoSQL,MapReduce,Storage,Servers,NLP库与工具包,机器学习工具包,数据可视化工具包,数据清洗,序列化指南等等。总之,是一本辞典式的大数据入门指导。

Mining of Massive Datasets:这本书是斯坦福大学Web Mining的讲义,里面很多内容与韩家炜的Data Mining那本书重合,但这本书里详细地讲了MapReduce的设计原理,PageRank(Google创业时期的核心排序算法,现在也在不断优化更新)讲解得也比较详细。

Developing Analytic Talent: 作者是个从事了十几年数据工作的geek,技术博客写得很有个人风格,写的内容都比较偏门,通常只有具备相关数据处理经验的人能体会出来,丝毫不照顾初学者的感受。比如他会谈到当数据流更新太快时该怎么办,或者MapReduce在什么时候不好用的问题,才不管你懂不懂相关基础原理。所以这本书不太适合初学者阅读。这本书其实是作者的博客文章的集结,用how to become a data scientist的逻辑把他近几年的博客文章串联了起来。

Past, Present and Future of Statistical Science:这本书是由COPSS(统计学社主席委员会,由国际各大统计学会的带头人组成)在50周年出版的一本纪念册,里面有50位统计学家每人分别贡献出的一两篇文章,有的回忆了自己当年如何走上统计学这条路,有的探讨了一些统计学的根本问题,有的谈了谈自己在从事的前沿研究,有的则给年轻一代写下了寄语。非常有爱的一本书。

其它资料

Harvard Data Science:这是H大的Data science在线课,我没有修过,但口碑很好。这门课需要费用8千刀左右,比起华盛顿大学的4千刀的Data science在线课虽贵一倍,但比斯坦福的14千刀要便宜将近一半(而且斯坦福的更偏计算机)。如果想自学,早有好心人分享了slides:(https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions:(https://github.com/cs109/content)

PyData:PyData是来自各个domain的用Python做数据的人每年举行一次的聚会,期间会有各路牛人举行一些规模不大的seminar或workshop,有好心人已经把video上传到github,有兴趣的去认领吧(DataTau/datascience-anthology-pydata · GitHub)

工具

R/Python/MATLAB(必备):如果是做数据分析和模型开发,以我的观察来看,使用这三种工具的最多。R生来就是一个统计学家开发的软件,所做的事也自然围绕统计学展开。MATLAB虽然算不上是个专业的数据分析工具,但因为很多人不是专业做数据的,做数据还是为了自己的domain expertise(特别是科学计算、信号处理等),而MATLAB又是个强大无比的Domain expertise工具,所以很多人也就顺带让MATLAB也承担了数据处理的工作,虽然它有时候显得效率不高。Python虽然不是做数据分析的专业软件,但作为一个面向对象的高级动态语言,其开源的生态使Python拥有无比丰富的库,Numpy, Scipy 实现了矩阵运算/科学计算,相当于实现了MATLAB的功能,Pandas又使Python能够像R一样处理dataframe,scikit-learn又实现了机器学习。

SQL(必备):虽然现在人们都说传统的关系型数据库如Oracle、MySQL越来越无法适应大数据的发展,但对于很多人来说,他们每天都有处理数据的需要,但可能一辈子都没机会接触TB级的数据。不管怎么说,不论是用关系型还是非关系型数据库,SQL语言是必须要掌握的技能,用什么数据库视具体情况而定。

MongoDB(可选):目前最受欢迎的非关系型数据库NoSQL之一,不少人认为MongoDB完全可以取代mySQL。确实MongoDB方便易用,扩展性强,Web2.0时代的必需品。

Hadoop/Spark/Storm(可选): MapReduce是当前最著名也是运用最广泛的分布式计算框架,由Google建立。Hadoop/Spark/storm都是基于MapReduce的框架建立起来的分布式计算系统,要说他们之间的区别就是,Hadoop用硬盘存储数据,Spark用内存存储数据,Storm只接受实时数据流而不存储数据。一言以蔽之,如果数据是离线的,如果数据比较复杂且对处理速度要求一般,就Hadoop,如果要速度,就Spark,如果数据是在线的实时的流数据,就Storm。

OpenRefine(可选):Google开发的一个易于操作的数据清洗工具,可以实现一些基本的清洗功能。

Tableau(可选):一个可交互的数据可视化工具,操作简单,开箱即用。而且图表都设计得非常漂亮。专业版1999美刀,终身使用。媒体和公关方面用得比较多。

Gephi(可选):跟Tableau类似,都是那种可交互的可视化工具,不需要编程基础,生成的图表在美学和设计上也是花了心血的。更擅长复杂网络的可视化。