js几种常见的排序算法

JavaScript024

js几种常见的排序算法,第1张

原理:比较两个相邻的元素,将值大的元素交换至右端。

思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。

N个数字要排序完成,总共进行N-1趟排序,每i趟的排序次数为(N-i)次,所以可以用双重循环语句,外层控制循环多少趟,内层控制每一趟的循环次数。

冒泡排序的优点:每进行一趟排序,就会少比较一次,因为每进行一趟排序都会找出一个较大值。如上例:第一趟比较之后,排在最后的一个数一定是最大的一个数,第二趟排序的时候,只需要比较除了最后一个数以外的其他的数,同样也能找出一个最大的数排在参与第二趟比较的数后面,第三趟比较的时候,只需要比较除了最后两个数以外的其他的数,以此类推……也就是说,没进行一趟比较,每一趟少比较一次,一定程度上减少了算法的量。

冒泡排序优化版:

一.选择排序原理

1.每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置

2.再从剩余未排序元素中继续寻找最小(大)元素,然后放到刚才已排序序列的后面。

3.以此类推,直到全部待排序的数据元素排完。

选择排序是不稳定的排序方法。例如:序列3,3,2,1, 我们知道第一次遍历的时候,选择最后一个元素1和第一个元素3交换,那么原序列中2个3的相对前后顺序就和之前不一样了,所以选择排序不是一个稳定的排序算法。

二.选择排序时间复杂度

第一次循环比较 n - 1次,第二次循环比较 n - 2次,依次类推,最后一个元素不需要比较,因此共进行 n - 1次循环,最后一次循环比较1次。

因此一共比较1 + 2 + 3 + ... +(n - 2)+(n - 1)次,求和得n2/2 - n / 2 ,忽略系数,取最高指数项,该排序的时间复杂度为O(n2)

选择排序优化版:

插入排序:

数据结构算法中排序有很多种,常见的、不常见的,至少包含十种以上。根据它们的特性,可以大致分为两种类型:比较类排序和非比较类排序

冒泡排序是一次比较两个元素,如果顺序是错误的就把它们交换过来。,直到不需要再交换

快速排序的基本思想是通过一趟排序,将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可以分别对这两部分记录继续进行排序,以达到整个序列有序

从数列中挑出一个元素,称为 “基准”(pivot);然后重新排序数列,所有元素比基准值小的摆放在基准前面、比基准值大的摆在基准的后面;在这个区分搞定之后,该基准就处于数列的中间位置;然后把小于基准值元素的子数列(left)和大于基准值元素的子数列(right)递归地调用 quick 方法排序完成,这就是快排的思路

通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,从而达到排序的效果

插入排序的思路是基于数组本身进行调整的,首先循环遍历从 i 等于 1 开始,拿到当前的 current 的值,去和前面的值比较,如果前面的大于当前的值,就把前面的值和当前的那个值进行交换,通过这样不断循环达到了排序的目的

将最小的元素存放在序列的起始位置,再从剩余未排序元素中继续寻找最小元素,然后放到已排序的序列后面……以此类推,直到所有元素均排序完毕

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质,即子结点的键值或索引总是小于(或者大于)它的父节点。堆的底层实际上就是一棵完全二叉树,可以用数组实现

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

通过 mid 可以把该数组分成左右两个数组,分别对这两个进行递归调用排序方法,最后将两个数组按照顺序归并起来