【R语言 第3篇】用R进行主成分分析主成分分析和探索性因子分析是两种用来探索和简化多变量复杂关系的常用方法。 主成分分析(PCA)是一种将数据降维技巧,它将大量相关变量转化成一组很少的不相关变量,这些无相关变量称为主成分。 探索性因子分析(EFA)是一系列用来发现一组2023-02-24Python130
86-预测分析-R语言实现-树模型rpart数据集的行是游戏玩家们玩的每一次游戏,列是某个玩家玩游戏时的速度、能力和决策,都是数值型变量。 任务是根据这些表现的衡量指标来预测某个玩家当前被分配到8个联赛中的哪一个,输出变量(LeagueIndex)是一个有序的类别变量,序号从1到2023-02-24Python210
回归分析 | R语言 -- 多元线性回归多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回2023-02-24Python80
go语言有类似javaagent的工具吗没有。go语言开发工具有:Gogland、Eclipse、LiteIDE、KomodoIDE、Atom、Brackets、VisualStudioCode、Cloud9、CodeEnv、Wide等等。golang语言并没有提供类似javaa2023-02-24Python90
r语言如何数据分析r语言数据分析是查看数据的结构、类型,数据处理。根据查询相关资料信息显示:R语言是一个开源、跨平台的科学计算和统计分析软件包,具有丰富多样、强大的的统计功能和数据分析功能,数据可视化可以绘制直方图、箱型图、小提琴图等展示分数的分布情况可以通2023-02-24Python300
Go语言——goroutine并发模型内核线程(Kernel-Level Thread ,KLT) 轻量级进程(Light Weight Process,LWP):轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有2023-02-24Python220
如何部署一个ruby on rails的web应用程序Ruby on Rails 正在令整个 Web 开发领域受到震憾。让我们首先了解底层的技术:Ruby 是一门免费的、简单的、直观的、可扩展的、可移植的、解释的脚本语言,用于快速而简单的面向对象编程。类似于 Perl,它支持 处理文本文件和执2023-02-24Python130
回归分析 | R语言 -- 多元线性回归多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回2023-02-24Python160
感知机(perception)与其算法实现(R)感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取值为1和-1二值。 感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型,感知机学习旨在求出将训练数据进行线性划分的分离超平面;输入2023-02-24Python160
机器学习模型评价指标及R实现机器学习模型评价指标及R实现1.ROC曲线考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive)2023-02-24Python110
r语言 怎么把数据变成时间序列时间序列数据是同一对象跨时间的观察值的向量 所以必须按照一定顺序(X1, X2, ..., Xt)横截面数据一般是同一时点对不同对象的观察值的集合 顺序的改变应该不影响计量的结果{X1, X2, ..., Xn} 时间序列(time ser2023-02-24Python130
我用了100行Python代码,实现了与女神尬聊微信(附代码)朋友圈很多人都想学python,有一个很重要的原因是它非常适合入门。对于 人工智能算法 的开发,python有其他编程语言所没有的独特优势, 代码量少 ,开发者只需把精力集中在算法研究上面。 本文介绍一个用python开发的,自动与美2023-02-24Python160
R语言数据分析实例一:离职率分析与建模预测本文分析利用IBM离职员工数据进行分析。在对离职率的影响因素进行观察的基础至上,建立模型并预测哪些员工更易离职。 一般而言,数据分析分为三个步骤:数据收集与清洗、探索性分析和建模预测。本文的数据集是IBM用于研究员工预测的 模拟数据2023-02-24Python160
r中如何去除残差图里的样本点r语言中残差与回归值的残差图r语言中残差与回归值的残差图_R语言基础-数据分析及常见数据分析方法weixin_39953102原创关注1点赞·7168人阅读R表达式中常用的符号残差(Residuals)残差是真实值与预测值之间的差,五个分位2023-02-24Python380
大家谁知道怎么用十折交叉验证进行参数选择应该怎么在R 中实现你说的应该是10折交叉验证,是指把数据集分成10份。机器学习中k折交叉验证是指将数据集分成k份(可以随机切分,也可以按时间切分,但需要确保训练集和测试集同分布),然后,选择一份作为测试集,剩下的k-1份作为训练集,训练完模型后计算一下损失值2023-02-24Python120
90-预测分析-R语言实现-时间序列1时间序列(time series)是随机变量Y 1 、Y 2 、……Y t 的一个序列,它是由等距的时间点序列索引的。 一个时间序列的均值函数就是该时间序列在某个时间索引t上的期望值。一般情况下,某个时间序列在某个时间索引t 1 的均2023-02-24Python220
回归分析 | R语言 -- 多元线性回归多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回2023-02-24Python130
看R语言建立回归分析,如何利用VIF查看共线性问题方法步骤1、首先,先教大家如何使用SPSS多元线性回归分析2、接下来是范例说明:此案例是希望找到与营收相关的多元回归式原先加入参数有:5个调整後回归R方:0.888显着性:皆小於0.05看起来相当拟合,无任何差错3、可依个人需求,勾2023-02-24Python220
如何在R语言中使用Logistic回归模型Logistic回归在做风险评估时,一般采用二值逻辑斯蒂回归(Binary Logistic Regression)。以滑坡灾害风险评估为例。1、滑坡发生与否分别用0和1表示(1表示风险发生,0表示风险未发生);2、确定影响滑坡风险的影响因2023-02-24Python150
回归分析 | R语言 -- 多元线性回归多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回2023-02-24Python150