R语言绘制三维散点图

R语言绘制三维散点图

以下是scatterplot3d、Plot3D、rgl包绘制三维散点图的小示例。 【Iris数据集】 scatterplot3d包绘制三维散点图 Plot3D 包绘制三维散点图 rgl包绘制三维散点图 “作图帮”微信公众
Python210
R语言之决策树和随机森林

R语言之决策树和随机森林

R语言之决策树和随机森林总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。一、特征生成:特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征
Python140
R语言常用函数(基本)

R语言常用函数(基本)

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表data.frame:数据框 c:连接为向量或列表 sequence:等差序列 rep:重复 length
Python130
R语言之决策树和随机森林

R语言之决策树和随机森林

R语言之决策树和随机森林总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。一、特征生成:特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征
Python150
R语言之决策树和随机森林

R语言之决策树和随机森林

R语言之决策树和随机森林总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。一、特征生成:特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征
Python140
如何在R中得到newey west 调整后的统计数值

如何在R中得到newey west 调整后的统计数值

Newey-West 对于预测误差均值的t 检验,在通常情况下应该由预测误差的样本均值和样本方差来检验,但是由于重叠观测(overlapping problem)的问题,所以预测误差是服从MA(k-1) 的过程在Excel里,选STDEV可
Python150
R语言相关性分析

R语言相关性分析

1.  R语言自带函数cor(data, method=" ")可以快速计算出相关系数 ,数据类型:data.frame  如data.frame为:zz, 绘图如下:a. single protein:线性
Python210
C语言上1e是什么意思

C语言上1e是什么意思

1e可能有几种根据位置 含义不同单独的1e是错误的,必须和其它的共用。1 和0x共用。 或者0X表示16进制0x1e 为10进制的302 后面还有数字。 比如1e7代表科学计数法的浮点数。为1*10^7次幂3 表示字符或者字符串如"
Python120
如何用R做GARCH模型

如何用R做GARCH模型

以AR(3)-GARCH(2,1)模型为例:首先在主窗口输入LS RR RR(-1) (-2) (-3)得出Variable Coefficient Std. Error t-Statistic Prob. RR(-1) 0.007606
Python150
如何用R实现WALD检验

如何用R实现WALD检验

用wald.test()就行,在aod包里。这个函数长成这个样子——wald.test(Sigma, b, Terms = NULL, L = NULL, H0 = NULL, df = NULL, verbose = FALSE)prin
Python150
R语言之决策树和随机森林

R语言之决策树和随机森林

R语言之决策树和随机森林总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。一、特征生成:特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征
Python130
R语言常用函数(基本)

R语言常用函数(基本)

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表data.frame:数据框 c:连接为向量或列表 sequence:等差序列 rep:重复 length
Python140
R语言常用函数(基本)

R语言常用函数(基本)

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表data.frame:数据框 c:连接为向量或列表 sequence:等差序列 rep:重复 length
Python150
R语言之决策树和随机森林

R语言之决策树和随机森林

R语言之决策树和随机森林总结决策树之前先总结一下特征的生成和选择,因为决策树就是一种内嵌型的特征选择过程,它的特征选择和算法是融合在一起的,不需要额外的特征选择。一、特征生成:特征生成是指在收集数据之时原始数据就具有的数据特征,这些数据特征
Python90
使用R语言进行协整关系检验

使用R语言进行协整关系检验

使用R语言进行协整关系检验协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:伪回归Spurious regression伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳
Python160