cpu(central pocessing unit)
中央处理器,是计算机的头脑,90%以上的数据信息都是由它来完成的。它的工作速度快慢直接影响到整部电脑的运行速度。cpu集成上万个晶体管,可分为控制单元(control unit;cu)、逻辑单元(arithmetic logic unit;alu)、存储单元(memory unit;mu)三大部分。以内部结构来分可分为:整数运算单元,浮点运算单元,mmx单元,l1 cache单元和寄存器等。
主频
cpu内部的时钟频率,是cpu进行运算时的工作频率。一般来说,主频越高,一个时钟周期里完成的指令数也越多,cpu的运算速度也就越快。但由于内部结构不同,并非所有时钟频率相同的cpu性能一样。
外频
即系统总线,cpu与周边设备传输数据的频率,具体是指cpu到芯片组之间的总线速度。
倍频
原先并没有倍频概念,cpu的主频和系统总线的速度是一样的,但cpu的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而cpu速度可以通过倍频来无限提升。那么cpu主频的计算方式变为:主频 = 外频 x 倍频。也就是倍频是指cpu和系统总线之间相差的倍数,当外频不变时,提高倍频,cpu主频也就越高。
缓存(cache)
cpu进行处理的数据信息多是从内存中调取的,但cpu的运算速度要比内存快得多,为此在此传输过程中放置一存储器,存储cpu经常使用的数据和指令。这样可以提高数据传输速度。可分一级缓存和二级缓存。
一级缓存
即l1 cache。集成在cpu内部中,用于cpu在处理数据过程中数据的暂时保存。由于缓存指令和数据与cpu同频工作,l1级高速缓存缓存的容量越大,存储信息越多,可减少cpu与内存之间的数据交换次数,提高cpu的运算效率。但因高速缓冲存储器均由静态ram组成,结构较复杂,在有限的cpu芯片面积上,l1级高速缓存的容量不可能做得太大。
二级缓存
即l2 cache。由于l1级高速缓存容量的限制,为了再次提高cpu的运算速度,在cpu外部放置一高速存储器,即二级缓存。工作主频比较灵活,可与cpu同频,也可不同。cpu在读取数据时,先在l1中寻找,再从l2寻找,然后是内存,在后是外存储器。所以l2对系统的影响也不容忽视。
内存总线速度:(memory-bus speed)
是指cpu与二级(l2)高速缓存和内存之间数据交流的速度。
扩展总线速度:(expansion-bus speed)
是指cpu与扩展设备之间的数据传输速度。扩展总线就是cpu与外部设备的桥梁。
地址总线宽度
简单的说是cpu能使用多大容量的内存,可以进行读取数据的物理地址空间。
数据总线宽度
数据总线负责整个系统的数据流量的大小,而数据总线宽度则决定了cpu与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。
生产工艺
在生产cpu过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。其生产的精度以微米(um)来表示,精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,提高cpu的集成度,cpu的功耗也越小。这样cpu的主频也可提高,在0.25微米的生产工艺最高可以达到600mhz的频率。而0.18微米的生产工艺cpu可达到g赫兹的水平上。0.13微米生产工艺的cpu即将面市。
工作电压
是指cpu正常工作所需的电压,提高工作电压,可以加强cpu内部信号,增加cpu的稳定性能。但会导致cpu的发热问题,cpu发热将改变cpu的化学介质,降低cpu的寿命。早期cpu工作电压为5v,随着制造工艺与主频的提高,cpu的工作电压有着很大的变化,piiicpu的电压为1.7v,解决了cpu发热过高的问题。
mmx(multimedia extensions,多媒体扩展指令集)英特尔开发的最早期simd指令集,可以增强浮点和多媒体运算的速度。
sse(streaming simd extensions,单一指令多数据流扩展) 英特尔开发的第二代simd指令集,有70条指令,可以增强浮点和多媒体运算的速度。
3dnow!(3d no waiting) amd公司开发的simd指令集,可以增强浮点和多媒体运算的速度,它的指令数为21条