Java语言没有指针,怎样实现链表?

Python010

Java语言没有指针,怎样实现链表?,第1张

Java语言中的对象引用实际上是一个指针(这里的指针均为概念上的意义,而非语言提供的数据类型),所以我们可以编写这样的类来实现链表中的结点

private static class Entry<E> {

E element  // 当前存储元素

Entry<E> next  // 下一个元素节点

Entry<E> previous  // 上一个元素节点

Entry(E element, Entry<E> next, Entry<E> previous) {

this.element = element

this.next = next

this.previous = previous

}

}

将数据域定义成Object类是因为Object类是广义超类,任何类对象都可以给其赋值,增加了代码的通用性。为了使链表可以被访问还需要定义一个表头,表头必须包含指向第一个结点的指针和指向当前结点的指针。为了便于在链表尾部增加结点,还可以增加一指向链表尾部的指针,另外还可以用一个域来表示链表的大小,当调用者想得到链表的大小时,不必遍历整个链表。

链表的数据结构我们可以用类List来实现链表结构,用变量Head、Tail、Length、Pointer来实现表头。

存储当前结点的指针时有一定的技巧,Pointer并非存储指向当前结点的指针,而是存储指向它的前趋结点的指针,当其值为null时表示当前结点是第一个结点,因为当删除当前结点后仍需保证剩下的结点构成链表,如果Pointer指向当前结点,则会给操作带来很大困难。如何得到当前结点呢?我们定义了一个方法cursor(),返回值是指向当前结点的指针。类List还定义了一些方法来实现对链表的基本操作,通过运用这些基本操作我们可以对链表进行各种操作。

例如reset()方法使第一个结点成为当前结点。insert(Object d)方法在当前结点前插入一个结点,并使其成为当前结点。remove()方法删除当前结点同时返回其内容,并使其后继结点成为当前结点,如果删除的是最后一个结点,则第一个结点变为当前结点。

双向链表:就是有双向指针,即双向的链域。\x0d\x0a链结点的结构:\x0d\x0a┌────┬────┬────────┐\x0d\x0a│ data │ next │ previous │\x0d\x0a└────┴────┴────────┘\x0d\x0a双向链表不必是双端链表(持有对最后一个链结点的引用),双端链表插入时是双向的。\x0d\x0a有两条链:一条从头到尾,一条从尾到头,删除遍历时也是双向的。\x0d\x0a/**\x0d\x0a * 双向链表\x0d\x0a */\x0d\x0apublic class DoublyLinkedList {\x0d\x0aprivate Link head //首结点\x0d\x0aprivate Link rear //尾部指针\x0d\x0apublic DoublyLinkedList() { }\x0d\x0apublic T peekHead() {\x0d\x0aif (head != null) {\x0d\x0areturn head.data\x0d\x0a}\x0d\x0areturn null\x0d\x0a}\x0d\x0apublic boolean isEmpty() {\x0d\x0areturn head == null\x0d\x0a}\x0d\x0apublic void insertFirst(T data) {// 插入 到 链头\x0d\x0aLink newLink = new Link(data)\x0d\x0aif (isEmpty()) {//为空时,第1次插入的新结点为尾结点\x0d\x0arear = newLink\x0d\x0a} else {\x0d\x0ahead.previous = newLink//旧头结点的上结点等于新结点\x0d\x0a}\x0d\x0anewLink.next = head//新结点的下结点旧头结点\x0d\x0ahead = newLink//赋值后,头结点的下结点是旧头结点,上结点null\x0d\x0a}\x0d\x0apublic void insertLast(T data) {//在链尾 插入\x0d\x0aLink newLink = new Link(data)\x0d\x0aif (isEmpty()) {\x0d\x0ahead = newLink\x0d\x0a} else {\x0d\x0arear.next = newLink\x0d\x0a}\x0d\x0anewLink.previous = rear\x0d\x0arear = newLink//赋值后,尾结点的上结点是旧尾结点,下结点null\x0d\x0a}\x0d\x0apublic T deleteHead() {//删除 链头\x0d\x0aif (isEmpty()) return null\x0d\x0aLink temp = head\x0d\x0ahead = head.next//变更首结点,为下一结点\x0d\x0aif (head != null) {\x0d\x0ahead.previous = null\x0d\x0a} else {\x0d\x0arear = null\x0d\x0a}\x0d\x0areturn temp.data\x0d\x0a}\x0d\x0apublic T deleteRear() {//删除 链尾\x0d\x0aif (isEmpty()) return null\x0d\x0aLink temp = rear\x0d\x0arear = rear.previous//变更尾结点,为上一结点\x0d\x0aif (rear != null) {\x0d\x0arear.next = null\x0d\x0a} else {\x0d\x0ahead = null\x0d\x0a}\x0d\x0areturn temp.data\x0d\x0a}\x0d\x0apublic T find(T t) {//从头到尾find\x0d\x0aif (isEmpty()) {\x0d\x0areturn null\x0d\x0a}\x0d\x0aLink find = head\x0d\x0awhile (find != null) {\x0d\x0aif (!find.data.equals(t)) {\x0d\x0afind = find.next\x0d\x0a} else {\x0d\x0abreak\x0d\x0a}\x0d\x0a}\x0d\x0aif (find == null) {\x0d\x0areturn null\x0d\x0a}\x0d\x0areturn find.data\x0d\x0a}\x0d\x0apublic T delete(T t) {\x0d\x0aif (isEmpty()) {\x0d\x0areturn null\x0d\x0a}\x0d\x0aLink current = head\x0d\x0awhile (!current.data.equals(t)) {\x0d\x0acurrent = current.next\x0d\x0aif (current == null) {\x0d\x0areturn null\x0d\x0a}\x0d\x0a}\x0d\x0aif (current == head) {\x0d\x0ahead = head.next\x0d\x0aif (head != null) {\x0d\x0ahead.previous = null\x0d\x0a}\x0d\x0a} else if (current == rear) {\x0d\x0arear = rear.previous\x0d\x0aif (rear != null) {\x0d\x0arear.next = null\x0d\x0a}\x0d\x0a} else {\x0d\x0a//中间的非两端的结点,要移除current\x0d\x0acurrent.next.previous = current.previous\x0d\x0acurrent.previous.next = current.next\x0d\x0a}\x0d\x0areturn current.data\x0d\x0a}\x0d\x0apublic boolean insertAfter(T key, T data) {//插入在key之后, key不存在return false\x0d\x0aif (isEmpty()) {\x0d\x0areturn false\x0d\x0a}\x0d\x0aLink current = head\x0d\x0awhile (!current.data.equals(key)) {\x0d\x0acurrent = current.next\x0d\x0aif (current == null) {\x0d\x0areturn false\x0d\x0a}\x0d\x0a}\x0d\x0aLink newLink = new Link(data)\x0d\x0aif (current == rear) {\x0d\x0arear = newLink\x0d\x0a} else {\x0d\x0anewLink.next = current.next\x0d\x0acurrent.next.previous = newLink\x0d\x0a}\x0d\x0acurrent.next = newLink\x0d\x0anewLink.previous = current\x0d\x0areturn true\x0d\x0a}\x0d\x0apublic void displayList4Head() {//从头开始遍历\x0d\x0aSystem.out.println("List (first-->last):")\x0d\x0aLink current = head\x0d\x0awhile (current != null) {\x0d\x0acurrent.displayLink()\x0d\x0acurrent = current.next\x0d\x0a}\x0d\x0a}\x0d\x0apublic void displayList4Rear() {//从尾开始遍历\x0d\x0aSystem.out.println("List (last-->first):")\x0d\x0aLink current = rear\x0d\x0awhile (current != null) {\x0d\x0acurrent.displayLink()\x0d\x0acurrent = current.previous\x0d\x0a}\x0d\x0a}\x0d\x0a\x0d\x0aclass Link {//链结点\x0d\x0aT data//数据域\x0d\x0aLink next//后继指针,结点 链域\x0d\x0aLink previous//前驱指针,结点 链域\x0d\x0aLink(T data) {\x0d\x0athis.data = data\x0d\x0a}\x0d\x0avoid displayLink() {\x0d\x0aSystem.out.println("the data is " + data.toString())\x0d\x0a}\x0d\x0a}\x0d\x0apublic static void main(String[] args) {\x0d\x0aDoublyLinkedList list = new DoublyLinkedList()\x0d\x0alist.insertLast(1)\x0d\x0alist.insertFirst(2)\x0d\x0alist.insertLast(3)\x0d\x0alist.insertFirst(4)\x0d\x0alist.insertLast(5)\x0d\x0alist.displayList4Head()\x0d\x0aInteger deleteHead = list.deleteHead()\x0d\x0aSystem.out.println("deleteHead:" + deleteHead)\x0d\x0alist.displayList4Head()\x0d\x0aInteger deleteRear = list.deleteRear()\x0d\x0aSystem.out.println("deleteRear:" + deleteRear)\x0d\x0alist.displayList4Rear()\x0d\x0aSystem.out.println("find:" + list.find(6))\x0d\x0aSystem.out.println("find:" + list.find(3))\x0d\x0aSystem.out.println("delete find:" + list.delete(6))\x0d\x0aSystem.out.println("delete find:" + list.delete(1))\x0d\x0alist.displayList4Head()\x0d\x0aSystem.out.println("----在指定key后插入----")\x0d\x0alist.insertAfter(2, 8)\x0d\x0alist.insertAfter(2, 9)\x0d\x0alist.insertAfter(9, 10)\x0d\x0alist.displayList4Head()\x0d\x0a}\x0d\x0a}

public class Test {

public static void main(String[] args) {

try{

LinkList list1 = new LinkList()

LinkList list2 = new LinkList()

LinkList list3 = null

list1.addAt(0, new Item(1, 5))

list1.addAt(1, new Item(-1.5, 3))

list1.addAt(2, new Item(1, 1))

list2.addAt(0, new Item(0.5, 5))

list2.addAt(1, new Item(0.5, 4))

list2.addAt(2, new Item(1.5, 3))

list2.addAt(3, new Item(3, 0))

list3 = mergeLinkList(list1, list2)

System.out.println("一元多项式的相加过程:")

list1.listAll()

System.out.println(" + ")

list2.listAll()

System.out.println(" = ")

list3.listAll()

}

catch(Exception e){

e.printStackTrace()

}

}

/**

* 一元多项式的一般项类

*/

class Item{

private double coef //一元多项式的一般项的系数

private int exp  //一元多项式的一般项的指数

public Item(){

this.coef = 0.0

this.exp = 0

}

public Item(double coef, int exp){

this.coef = coef

this.exp = exp

}

public double getCoef(){

return this.coef

}

public void setCoef(double coef){

this.coef = coef

}

public int getExp(){

return this.exp

}

public void setExp(int exp){

this.exp = exp

}

}

/**

* 链表结点类

*/

class Node{

private Item data

private Node next  //链表结点的指针域,指向直接后继结点

public Node(){

data = null

next = null

}

public Node(Item data, Node next){

this.data = data

this.next = next

}

public Item getData(){

return this.data

}

public void setData(Item data){

this.data = data

}

public Node getNext(){

return this.next

}

public void setNext(Node next){

this.next = next

}

}

/**

* 链表类

*/

class LinkList{

private Node head = null//头结点指针

private int size = 0

public LinkList(){

head = new Node()

size = 0

}

//在i位置插入元素elem

public boolean addAt(int i, Item elem) {

if(i <0 || i >size){

return false

}

Node pre,curr

int pos

for(pre=headi>0 &&pre.getNext()!=nulli--,pre=pre.getNext())

curr = new Node(elem, pre.getNext())

pre.setNext(curr)

size++

return true

}

//删除i位置的元素

public boolean removeAt(int i) {

if(i <0 || i >= size){

return false

}

Node pre,curr

for(pre=headi>0 &&pre.getNext()!=nulli--,pre=pre.getNext())

curr = pre.getNext()

pre.setNext(curr.getNext())

size--

return true

}

java是一种可以撰写跨平台应用软件的面向对象的程序设计语言。Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。