用R语言进行关联分析

Python014

用R语言进行关联分析,第1张

用R语言进行关联分析关联是两个或多个变量取值之间存在的一类重要的可被发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。几个基本概念1. 项集这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。2. 关联规则一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。3. 支持度(Support)支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。4. 置信度(Confidence)置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。5. 提升度(lift)提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。R中Apriori算法算法步骤:1. 选出满足支持度最小阈值的所有项集,即频繁项集;2. 从频繁项集中找出满足最小置信度的所有规则。>library(arules) #加载arules包>click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)>rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法>rulesset of419 rules>inspect(rules[1:10]) #查看前十条规则解释1)library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)2)click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据read.transactions(file, format =c("basket", "single"), sep = NULL,cols = NULL, rm.duplicates =FALSE, encoding = "unknown")file:文件名,对应click_detail中的“click_detail.txt”format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。文件形式:item1,item2item1item2,item3读入后:items 1 {item1,item2}2 {item1}3 {item2,item3}single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:trans1 item1trans2 item1trans2 item2读入后:items transactionID1 {item1}trans12 {item1, item2}trans2sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item idsrm.duplicates:是否移除重复项,默认为FALSEencoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.3)rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数apriori(data, parameter = NULL, appearance = NULL, control = NULL)data:数据parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)supp:支持度(support)conf:置信度(confidence)maxlen,minlen:每个项集所含项数的最大最小值target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)补充通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)Apriori算法两步法:1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。频繁项集产生所需要的计算开销远大于规则产生所需的计算开销频繁项集的产生几个概念:1, 一个包含K个项的数据集,可能产生2^k个候选集 2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。 3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。一个例子(百度到的一个PPT上的):当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:代码:item <- list(c("bread","milk"),c("bread","diaper","beer","eggs"),c("milk","diaper","beer","coke"),c("bread","milk","diaper","beer"),c("bread","milk","diaper","coke"))names(item) <- paste("tr",c(1:5),sep = "")itemtrans <- as(item,"transactions") #将List转为transactions型rules = eclat(trans,parameter = list(supp = 0.6,target ="frequent itemsets"),control = list(sort=1))inspect(rules) #查看频繁项集运行后结果:>inspect(rules)items support1{beer, diaper}0.62{diaper, milk} 0.63{bread,diaper}0.64{bread,milk} 0.65{beer} 0.66{milk} 0.87{bread} 0.88{diaper} 0.8以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。规则的产生每个频繁k项集能产生最多2k-2个关联规则将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。

R一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) >q的最小x)求值,并根据分布进行模拟

在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,...),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。

例:用0~1之间的均匀分布产生10个随机点

>runif(10)

[1] 0.961465376 0.0075219250.193619234 0.137027246 0.739370654 0.072907082

[7] 0.674551635 0.6507778110.984664183 0.796723066

大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, ...)),累计概率密度函数(也即分布函数)(pfunc(x,...))和分位数函数(qfunc(p, ...),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:

>qnorm(0.025)

[1] -1.959964

>qnorm(0.975)

————————————————

《深度学习精要(基于R语言)》学习笔记

机器学习主要用于开发和使用那些从原始数据中学习、总结出来的用于进行预测的算法。

深度学习是一种强大的多层架构,可以用于模式识别、信号检测以及分类或预测等多个领域。

神经网络包括一系列的神经元,或者叫作节点,它们彼此连结并处理输入。神经元之间的连结经过加权处理,权重取决于从数据中学习、总结出的使用函数。一组神经元的激活和权重(从数据中自适应地学习)可以提供给其他的神经元,其中一些最终神经元的激活就是预测。

经常选择的激活函数是sigmoid函数以及双曲正切函数tanh,因为径向基函数是有效的函数逼近,所以有时也会用到它们。

权重是从每个隐藏单元到每个输出的路径,对第i个的输出通过(w_i)表示。如创建隐藏层的权重,这些权重也是从数据中学习得到的。分类会经常使用一种最终变换,softmax函数。线性回归经常使用恒等(identity)函数,它返回输入值。权重必须从数据中学习得到,权重为零或接近零基本上等同于放弃不必要的关系。

R中神经网络相关包:

一旦集群完成初始化,可以使用R或本地主机(127.0.0.1:54321)提供的Web接口与它连接。

如果数据集已经加载到R,使用as.h2o()函数:

如果数据没有载入R,可以直接导入到h2o中:

也可以直接导入网络上的文件:

导入基于图片识别手写体数字,数据集的每一列(即特征),表示图像的一个像素。每张图像都经过标准化处理,转化成同样的大小,所以所有图像的像素个数都相同。第一列包含真实的数据标签,其余各列是黑暗像素的值,它用于分类。

使用caret包训练模型:

生成数据的一组预测,查看柱状图:

跟训练集数据柱状图对比,很明显模型不是最优的。

通过混淆矩阵检查模型性能:

No Information Rate(无信息率)指不考虑任何信息而仅仅通过猜测来决定最频繁的类的准确度期望。在情形“1”中,它在11.16%的时间中发生。P值(P-Value [Acc >NIR])检验了观测准确度(Accuracy : 0.3674)是否显著不同于无信息率(11.16%)。

Class: 0的灵敏度(Sensitivity)可以解释为:89.07%的数字0被正确地预测为0。特异度(Specificity)可以解释为:95.14%的预测为非数字0被预测为不是数字0。

检出率(Detection Rate)是真阳性的百分比,而最后的检出预防度(detection prevalence)是预测为阳性的实例比例,不管它们是否真的为阳性。

平衡准确度(balanced accuracy)是灵敏度和特异度的平均值。

接下来我们通过增加神经元的个数来提升模型的性能,其代价是模型的复杂性会显著增加:

隐藏神经元的数量从5个增加到10个,样本内性能的总准确度从36.74% 提升到了 65.4%。我们继续增加隐藏神经元的数量:

增加到40个神经元后准确度跟10个神经元的一样,还是65.4%。如果是商业问题,还需要继续调节神经元的数量和衰变率。但是作为学习,模型对数字9的表现比较差,对其他数字都还行。

RSNNS包提供了使用斯图加特神经网络仿真器(Stuttgart Neural Network Simulator , SNNS)模型的接口,但是,对基本的、单隐藏层的、前馈的神经网络,我们可以使用mlp()这个更为方便的封装函数,它的名称表示多层感知器(multi-layer perceptron)。

RSNNS包要求输入为矩阵、响应变量为一个哑变量的 矩阵 ,因此每个可能的类表示成矩阵列中的 0/1 编码。

通过decodeClassLabels()函数可以很方便的将数据转换为哑变量矩阵。

预测结果的值为1-10,但是实际值为0-9,所以在生成混淆矩阵时,需要先减去1:

RSNNS包的学习算法使用了相同数目的隐藏神经元,计算结果的性能却有极大提高。

函数I()有两个作用:

1.在对data.frame的调用中将对象包含在I()中来保护它,防止字符向量到factor的转换和名称的删除,并确保矩阵作为单列插入。

2.在formula函数中,它被用来禁止将“+”、“-”、“*”和“^”等运算符解释为公式运算符,因此它们被用作算术运算符。

从RSNNS包返回的预测值(pred.ml4)中可以看到,一个观测可能有40%的概率成为“5”,20%的概率成为“6”,等等。最简单的方法就是基于高预测概率来对观测进行分类。RSNNS包有一种称为赢者通吃(winner takes all,WTA)的方法,只要没有关系就选择概率最高的类,最高的概率高于用户定义的阈值(这个阈值可以是0),而其他类的预测概率都低于最大值减去另一个用户定义的阈值,否则观测的分类就不明了。如果这两个阈值都是0(缺省),那么最大值必然存在并且唯一。这种方法的优点是它提供了某种质量控制。

但是在实际应用中,比如一个医学背景下,我们收集了病人的多种生物指标和基因信息,用来分类确定他们是否健康,是否有患癌症的风险,是否有患心脏病的风险,即使有40%的患癌概率也需要病人进一步做检查,即便他健康的概率是60%。RSNNS包中还提供一种分类方法称为“402040”,如果一个值高于用户定义的阈值,而所有的其他值低于用户定义的另一个阈值。如果多个值都高于第一个阈值,或者任何值都不低于第二个阈值,我们就把观测定性为未知的。这样做的目的是再次给出了某种质量控制。

“0”分类表示未知的预测。

通常来说,过拟合指模型在训练集上的性能优于测试集。过拟合发生在模型正好拟合了训练数据的噪声部分的时候。因为考虑了噪声,它似乎更准确,但一个数据集和下一个数据集的噪声不同,这种准确度不能运用于除了训练数据之外的任何数据 — 它没有一般化。

使用RSNNS模型对样本外数据预测:

模型在第一个5000行上的准确度为85.1%,在第二个5000行上的准确度减少为80%,损失超过5%,换句话说,使用训练数据来评价模型性能导致了过度乐观的准确度估计,过度估计是5%。

这个问题我们后面再处理。