R语言常用函数(基本)

Python08

R语言常用函数(基本),第1张

vector:向量 numeric:数值型向量 logical:逻辑型向量 character;字符型向量 list:列表 data.frame:数据框

c:连接为向量或列表 sequence:等差序列 rep:重复

length:求长度 subset:求子集 seq,from:to, NA:缺失值 NULL:空对象 sort,order,unique,rev:排序 unlist:展平列表 attr,attributes:对象属性

mode,typeof:对象存储模式与类型 names:对象的名字属性

character:字符型向量 nchar:字符数 substr:取子串 format,formatC:把对象用格式转换为字符串 paste,strsplit:连接或拆分

charmatch,pmatch:字符串匹配 grep,sub,gsub:模式匹配与替换

complex,Re,Im,Mod,Arg,Conj:复数函数

factor:因子 codes:因子的编码 levels:因子的各水平的名字 nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子

table:交叉频数表 split:按因子分组 aggregate:计算各数据子集的概括统计量 tapply:对“不规则”数组应用函数

+, -, *, /, ^, %%, %/%:四则运算 ceiling,floor,round,signif,trunc,zapsmall:舍入 max,min,pmax,pmin:最大最小值

range:最大值和最小值 sum,prod:向量元素和,积 cumsum,cumprod,cummax,cummin:累加、累乘 sort:排序 approx和approx fun:插值 diff:差分 sign:符号函数

abs,sqrt:绝对值,平方根 log, exp, log10, log2:对数与指数函数 sin,cos,tan,asin,acos,atan,atan2:三角函数

sinh,cosh,tanh,asinh,acosh,atanh:双曲函数

beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数

fft,mvfft,convolve:富利叶变换及卷积 polyroot:多项式求根 poly:正交多项式 spline,splinefun:样条差值

besselI,besselK,besselJ,besselY,gammaCody:Bessel函数 deriv:简单表达式的符号微分或算法微分

array:建立数组 matrix:生成矩阵 data.matrix:把数据框转换为数值型矩阵 lower.tri:矩阵的下三角部分 mat.or.vec:生成矩阵或向量 t:矩阵转置

cbind:把列合并为矩阵 rbind:把行合并为矩阵 diag:矩阵对角元素向量或生成对角矩阵 aperm:数组转置 nrow, ncol:计算数组的行数和列数 dim:对象的维向量

dimnames:对象的维名 row/colnames:行名或列名 %*%:矩阵乘法 crossprod:矩阵交叉乘积(内积) outer:数组外积 kronecker:数组的Kronecker积

apply:对数组的某些维应用函数 tapply:对“不规则”数组应用函数 sweep:计算数组的概括统计量 aggregate:计算数据子集的概括统计量 scale:矩阵标准化

matplot:对矩阵各列绘图 cor:相关阵或协差阵 Contrast:对照矩阵 row:矩阵的行下标集 col:求列下标集

solve:解线性方程组或求逆 eigen:矩阵的特征值分解 svd:矩阵的奇异值分解 backsolve:解上三角或下三角方程组 chol:Choleski分解

qr:矩阵的QR分解 chol2inv:由Choleski分解求逆

<,>,<=,>=,==,!=:比较运算符 !,&,&&,|,||,xor():逻辑运算符 logical:生成逻辑向量 all,any:逻辑向量都为真或存在真

ifelse():二者择一 match,%in%:查找 unique:找出互不相同的元素 which:找到真值下标集合 duplicated:找到重复元素

optimize,uniroot,polyroot:一维优化与求根

if,else,ifelse,switch:分支 for,while,repeat,break,next:循环 apply,lapply,sapply,tapply,sweep:替代循环的函数。

function:函数定义 source:调用文件 call:函数调用 .C,.Fortran:调用C或者Fortran子程序的动态链接库。 Recall:递归调用

browser,debug,trace,traceback:程序调试 options:指定系统参数 missing:判断虚参是否有对应实参 nargs:参数个数 stop:终止函数执行

on.exit:指定退出时执行 eval,expression:表达式计算 system.time:表达式计算计时 invisible:使变量不显示 menu:选择菜单(字符列表菜单)

其它与函数有关的还有:delay,delete.response,deparse,do.call,dput,environment ,,formals,format.info,interactive,

is.finite,is.function,is.language,is.recursive ,match.arg,match.call,match.fun,model.extract,name,parse,substitute,sys.parent ,warning,machine

cat,print:显示对象 sink:输出转向到指定文件 dump,save,dput,write:输出对象 scan,read.table,load,dget:读入

ls,objects:显示对象列表 rm, remove:删除对象 q,quit:退出系统 .First,.Last:初始运行函数与退出运行函数。

options:系统选项 ?,help,help.start,apropos:帮助功能 data:列出数据集分析

每一种分布有四个函数:d――density(密度函数),p――分布函数,q――分位数函数,r――随机数函数。

比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:

norm:正态,t:t分布,f:F分布,chisq:卡方(包括非中心) unif:均匀,exp:指数,weibull:威布尔,gamma:伽玛,beta:贝塔

lnorm:对数正态,logis:逻辑分布,cauchy:柯西, binom:二项分布,geom:几何分布,hyper:超几何,nbinom:负二项,pois:泊松 signrank:符号秩,

wilcox:秩和,tukey:学生化极差

sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。

R中已实现的有chisq.test,prop.test,t.test。

cor,cov.wt,var:协方差阵及相关阵计算 biplot,biplot.princomp:多元数据biplot图 cancor:典则相关 princomp:主成分分析 hclust:谱系聚类

kmeans:k-均值聚类 cmdscale:经典多维标度 其它有dist,mahalanobis,cov.rob。

ts:时间序列对象 diff:计算差分 time:时间序列的采样时间 window:时间窗

lm,glm,aov:线性模型、广义线性模型、方差

基于R语言的梯度推进算法介绍

通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。

Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。

在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。

快问快答

每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:

Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。

Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。

我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。

从一个简单的例子出发

假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?

有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:

Y = M(x) + error

如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:

error = G(x) + error2

或许,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。

error2 = H(x) + error3

然后我们将上述式子组合起来:

Y = M(x) + G(x) + H(x) + error3

这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,

Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4

那么,我们可能就构建了一个更好的模型。

上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:

1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?

2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?

接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。

试着想象一个分类问题

请看下图:

从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。

算法的理论基础

我们该如何分配观测值的权重呢?

通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。

步骤1:假设一个α(t);

步骤2:得到弱分类器h(t);

步骤3:更新总体分布,

其中,

步骤4:再次运用新的总体分布去得到下一个分类器;

觉得步骤3中的数学很可怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?

步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;

步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:

案例练习

最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。

library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%

接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:

fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)

在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。

结束语

笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。

以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货

一下自己学习关联规则经典算法Apriori的笔记。

1、概述

Apriori算法是用一种称为逐层搜索的迭代方法,从项集长度k=1开始,选出频繁的k=1项集,根据先验性质:频繁项集的子集一定是频繁的(逆否命题:非频繁项集的超集一定是非频繁的,通俗的说就是某件事发生的概率很低,比这件事发生条件更严苛的事情发生的概率会更低),筛选k=2项集中的频繁项集,以此迭代k=3...。每迭代一次都要完整的扫描一次数据库。

2、关联规则三度:

支持度:占比

置信度:条件概率

提升度:相关性

3、R语言示例代码如下:(小众语言的辛酸:选项里没有。。)

[plain] view plain copy

library(arules)

#从rattle包中读入数据

dvdtrans <- read.csv(system.file("csv", "dvdtrans.csv",package="rattle"))

str(dvdtrans)

#将数据转化为合适的格式

data <- as(split(dvdtrans$Item,dvdtrans$ID),"transactions")

data

#用 apriori命令生成频繁项集,设其支持度为0.5,置信度为0.8

rules <- apriori(data, parameter=list(support=0.5,confidence=0.8,minlen = 2))

#用inspect命令查看提取规则

inspect(rules)

常用数据形式有data.frame格式和list格式,前者即A项集为一列B项集为另一列,后者为A和B放在同一个购物篮中。

去除冗余规则以及提取子规则代码如下:

[plain] view plain copy

redundant.rm <- function(rule,by="lift")

{

#rule:需要进行简化的规则

#by:在清除的时候根据那个变量来选择,

#可能取值为"support","lift","confidence"

a <- sort(rule,by=by)

m<- is.subset(a,a,proper=TRUE)

m[lower.tri(m, diag=TRUE)] <- NA

r <- colSums(m, na.rm=TRUE) >= 1

finall.rules <- a[!r]

return(finall.rules)

}

rules <- redundant.rm(rules)

rules.sub <- subset(rules, subset = lhs %in% "筛选项集名称" &lift >1)