机器学习模型评价指标及R实现

Python011

机器学习模型评价指标及R实现,第1张

机器学习模型评价指标及R实现

1.ROC曲线

考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

列联表如下表所示,1代表正类,0代表负类。

真正类率(true positive rate ,TPR), 也称为 Sensitivity,计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。

假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。

真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1 - FPR。 在一个二分类模型中,对于所得到的连续结果,假设已确定一个阈值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阈值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。

ROC曲线正是由两个变量1-specificity(x轴) 和 Sensitivity(y轴)绘制的,其中1-specificity为FPR,Sensitivity为TPR。随着阈值的改变,就能得到每个阈值所对应的1-specificity和Sensitivity,最后绘制成图像。

该图像的面积如果越接近1,那么我们则认为该分类器效果越好。从直觉上来说,假设我们的预测全部100%正确,那么不管阈值怎么变(除了阈值等于0和1时),我们的Sensitivity(真正类)率永远等于1,1-specificity(1-真负类率)永远等于0,所以该图就是个正方形,面积为1,效果最好。

样例数据集:

library(ROCR)

data(ROCR.simple)

ROCR.simple<-as.data.frame(ROCR.simple)

head(ROCR.simple)

# predictions labels

# 1 0.6125478 1

# 2 0.3642710 1

# 3 0.4321361 0

# 4 0.1402911 0

# 5 0.3848959 0

# 6 0.2444155 1

绘制ROC图:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

perf <- performance(pred,"tpr","fpr")

plot(perf,colorize=TRUE)

2.AUC值

AUC值就是ROC曲线下的面积,可以通过以下代码计算:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

auc.tmp <- performance(pred,"auc")

auc <- as.numeric([email protected])

3.Recall-Precision(PR)曲线

同样是一个二分类的模型的列联表,我们可以定义:

然后我们通过计算不同的阈值,以Recall为X轴,Precision为Y轴绘制图像。

PR图可以有这样的应用,引用一个例子[1]:

1. 地震的预测

对于地震的预测,我们希望的是RECALL非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲PRECISION。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次对了8次漏了两次。

2. 嫌疑人定罪

基于不错怪一个好人的原则,对于嫌疑人的定罪我们希望是非常准确的。及时有时候放过了一些罪犯(recall低),但也是值得的。

对于分类器来说,本质上是给一个概率,此时,我们再选择一个CUTOFF点(阀值),高于这个点的判正,低于的判负。那么这个点的选择就需要结合你的具体场景去选择。反过来,场景会决定训练模型时的标准,比如第一个场景中,我们就只看RECALL=99.9999%(地震全中)时的PRECISION,其他指标就变得没有了意义。

绘制代码:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

RP.perf <- performance(pred, "prec", "rec")

plot (RP.perf)

#查看阈值为0.1,0.5,0.9下的召回率和精确率

plot(RP.perf, colorize=T, colorkey.pos="top",

print.cutoffs.at=c(0.1,0.5,0.9), text.cex=1,

text.adj=c(1.2, 1.2), lwd=2)

一般这曲线越靠上,则认为模型越好。对于这个曲线的评价,我们可以使用F分数来描述它。就像ROC使用AUC来描述一样。

4.F1分数

分数定义如下:

我们可以使用R计算F1分数:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

f.perf <- performance(pred, "f")

plot(f.perf) #横坐标为阈值的取值

5.均方根误差RMSE

回归模型中最常用的评价模型便是RMSE(root mean square error,平方根误差),其又被称为RMSD(root mean square deviation),其定义如下:

其中,yi是第i个样本的真实值,y^i是第i个样本的预测值,n是样本的个数。该评价指标使用的便是欧式距离。

??RMSE虽然广为使用,但是其存在一些缺点,因为它是使用平均误差,而平均值对异常点(outliers)较敏感,如果回归器对某个点的回归值很不理性,那么它的误差则较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。 所以有的时候我们会先剔除掉异常值,然后再计算RMSE。

R语言中RMSE计算代码如下:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

rmse.tmp<-performance(pred, "rmse")

[email protected]

6.SAR

SAR是一个结合了各类评价指标,想要使得评价更具有鲁棒性的指标。(cf. Caruana R., ROCAI2004):

其中准确率(Accuracy)是指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

sar.perf<-performance(pred, "sar")

7.多分类的AUC[5]

将二类 AUC 方法直接扩展到多类分类评估中, 存在表述空间维数高、复杂性大的问题。 一般采用将多类分类转成多个二类分类的思想, 用二类 AUC 方法来评估多类分类器的性能。Fawcett 根据这种思想提出了 F- AUC 方法[4], 该评估模型如下

其中AUC(i,rest)是计算 用 ” 1- a- r”方 法 得 到 的 每 个 二 类 分 类器的 AUC 值,“ 1- a- r”方法思想是 k 类分类问题构造 k 个二类分类器, 第 i 个二类分类器中用第 i 类的训练样本作为正例, 其他所有样本作为负例。 p ( i) 是计算每个类在所有样本中占有的比例,

在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价、身高、GDP、学生成绩等,发现这些被预测的变量都属于连续型变量。然而有些情况下,被预测变量可能是二元变量,即成功或失败、流失或不流失、涨或跌等,对于这类问题,线性回归将束手无策。这个时候就需要另一种回归方法进行预测,即Logistic回归。

在实际应用中,Logistic模型主要有三大用途:

1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素;

2)用于预测,可以预测某种情况发生的概率或可能性大小;

3)用于判别,判断某个新样本所属的类别。

Logistic模型实际上是一种回归模型,但这种模型又与普通的线性回归模型又有一定的区别:

1)Logistic回归模型的因变量为二分类变量;

2)该模型的因变量和自变量之间不存在线性关系;

3)一般线性回归模型中需要假设独立同分布、方差齐性等,而Logistic回归模型不需要;

4)Logistic回归没有关于自变量分布的假设条件,可以是连续变量、离散变量和虚拟变量;

5)由于因变量和自变量之间不存在线性关系,所以参数(偏回归系数)使用最大似然估计法计算。

logistic回归模型概述

广义线性回归是探索“响应变量的期望”与“自变量”的关系,以实现对非线性关系的某种拟合。这里面涉及到一个“连接函数”和一个“误差函数”,“响应变量的期望”经过连接函数作用后,与“自变量”存在线性关系。选取不同的“连接函数”与“误差函数”可以构造不同的广义回归模型。当误差函数取“二项分布”而连接函数取“logit函数”时,就是常见的“logistic回归模型”,在0-1响应的问题中得到了大量的应用。

Logistic回归主要通过构造一个重要的指标:发生比来判定因变量的类别。在这里我们引入概率的概念,把事件发生定义为Y=1,事件未发生定义为Y=0,那么事件发生的概率为p,事件未发生的概率为1-p,把p看成x的线性函数;

回归中,最常用的估计是最小二乘估计,因为使得p在[0,1]之间变换,最小二乘估计不太合适,有木有一种估计法能让p在趋近与0和1的时候变换缓慢一些(不敏感),这种变换是我们想要的,于是引入Logit变换,对p/(1-p)也就是发生与不发生的比值取对数,也称对数差异比。经过变换后,p对x就不是线性关系了。