关于球面的R

Python09

关于球面的R,第1张

空间中与一定点的距离为定值的动点的轨迹。定点称为球心,定距离称为半径

R

球面也可以看成是由半圆绕着它的直径旋转一周所形成的曲面。球面所包围的立体称为球体,简称球。在空间直角坐标系中,以坐标原点为球心,半径为R的球面的方程为x^2+y^2+z^2=R^2,

球面半径为R时,球面面积为4πR^2,球的体积为4πR^3/3

http://baike.baidu.com/view/324915.htm?fr=ala0_1

R代表圆的(半径)。d表示圆的直径。

在古典几何中,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。 这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。

半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。 通过延伸,直径d定义为半径的两倍:d=2r。

直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离,通常用字母“d”表示。连接圆周上两点并通过圆心的直线称圆直径,连接球面上两点并通过球心的直线称球直径。

扩展资料:

与圆相关的公式:

1、圆面积:S=πr²,S=π(d/2)²。(d为直径,r为半径)。

2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。

3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。

4、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。

5、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。

设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。这样的三个数r,φ,θ叫做点P的球面坐标,这里r,φ,θ的变化范围为

r∈[0,+∞),

φ∈[0, 2π],

θ∈[0, π] .

当r,θ或φ分别为常数时,可以表示如下特殊曲面:

r = 常数,即以原点为心的球面;

θ= 常数,即以原点为顶点、z轴为轴的圆锥面;

φ= 常数,即过z轴的半平面。

球坐标系下的微分关系:

在球坐标系中,沿基矢方向的三个线段元为:

dl(r)=dr, dl(θ)=rdθ, dl(φ)=rsinθdφ

球坐标的面元面积是:

dS=dl(θ)× dl(φ)=r2sinθdθdφ

体积元的体积为:

dV=dl(r)×dl(θ)×dl(φ)= r2sinθdrdθdφ

对于球壳转动惯量:

设以z坐标为轴的转动惯量J;球壳面积密度ρ;回转半径Rsinθ;

dJ=ρ(Rsinθ)2 dS

球壳半径为常数,dS =R2sinθdθdφ

J=2∫02∏∫0∏/2 ρ(Rsinθ)2 R2sinθdθdφ 取半壳积分

=2ρR4∫02∏∫0∏/2 sinθ3 dθdφ

=8/3 ρ∏R4

ρ=球壳质量M/球壳面积S

S=2∫02∏∫0∏/2 R2sinθdθdφ=4∏R2

把ρ=M/(4∏R2)代入得

得 J=2/3 MR2