【R语言编程】---根据表达量计算mRNA与lncRNA的皮尔森相关系数

Python016

【R语言编程】---根据表达量计算mRNA与lncRNA的皮尔森相关系数,第1张

前言: 在构建ceRNA 网络时,需要计算lncRNA 与 蛋白编码gene (pc gene) 间的表达相关性,一般采用皮尔逊相关系数。具体如何做呢?

2.获得mRNA的表达矩阵

4个基因在100个样本的表达量矩阵:

3.计算lncRNA 与gene 的表达相关性

使用cor()函数进行皮尔森相关系数计算,就是这么简单:

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性分析旨在研究两个或两个以上随机变量之间相互依存关系的方向和密切程度。

一般来讲研究对象(样品或处理组)之间使用距离分析,而元素(物种或环境因子)之间进行相关性分析 。两个变量之间的相关性可以用简单相关系数(例如皮尔森相关系数等)进行表示,相关系数越接近1,两个元素相关性越大,相关系数越接近0,两个元素越独立。

Pearson相关系数是用于表示相关性大小的最常用指标,数值介于-1~1之间,越接近0相关性越低,越接近-1或1相关性越高。正负号表明相关方向,正号为正相关、负号为负相关。适用于两个正态分布的连续变量。

利用两变量的秩次大小来进行分析,属于非参数统计方法。适用于不满足Pearson相关系数正态分布要求的连续变量。也可以用于有序分类变量的之间的相关性测量。

Kendall's Tau相关系数是一种非参数检验,适用于两个有序分类变量。

此外衡量两个变量之间关系的方法还有:卡方检验、Fisher精确检验等。

Pearson、Spearman、Kendall相关系数都可以通过cor函数实现,cov协方差函数参数同cor函数。

ggcorrplot包内只有2个函数,一个cor_pmat()用于计算p值,一个ggcorrplot()用于绘图。ggcorrplot相当于精简版的corrplot包,只有主题更加丰富多样。

This function computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix.

这个函数用特定的方法计算矩阵的行之间的距离,并返回距离矩阵。

scale是对矩阵的每一列进行标准化,如果要对行标准化需要先转置。如 heatmapdata <- t(scale(t(heatmapdata)))

多元线性回归 是 简单线性回归 的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。

例如,对于三个预测变量(x),y​​的预测由以下等式表示: y = b0 + b1*x1 + b2*x2 + b3*x3

回归贝塔系数测量每个预测变量与结果之间的关联。“ b_j”可以解释为“ x_j”每增加一个单位对y的平均影响,同时保持所有其他预测变量不变。

在本节中,依然使用 datarium 包中的 marketing 数据集,我们将建立一个多元回归模型,根据在三种广告媒体(youtube,facebook和报纸)上投入的预算来预测销售。计算公式如下: sales = b0 + b1*youtube + b2*facebook + b3*newspaper

您可以如下计算R中的多个回归模型系数:

请注意,如果您的数据中包含许多预测变量,则可以使用 ~. 以下命令将模型中的所有可用变量简单地包括在内:

从上面的输出中,系数表显示β系数估计值及其显着性水平。列为:

如前所述,您可以使用R函数轻松进行预测 predict() :

在使用模型进行预测之前,您需要评估模型的统计显着性。通过显示模型的统计摘要,可以轻松地进行检查。

显示模型的统计摘要,如下所示:

摘要输出显示6个​​组件,包括:

解释多元回归分析的第一步是在模型摘要的底部检查F统计量和关联的p值。

在我们的示例中,可以看出F统计量的p值<2.2e-16,这是非常重要的。这意味着 至少一个预测变量与结果变量显着相关

要查看哪些预测变量很重要,您可以检查系数表,该表显示了回归beta系数和相关的t统计p值的估计。

对于给定的预测变量,t统计量评估预测变量和结果变量之间是否存在显着关联,即,预测变量的beta系数是否显着不同于零。

可以看出,youtube和facebook广告预算的变化与销售的变化显着相关,而报纸预算的变化与销售却没有显着相关。

对于给定的预测变量,系数(b)可以解释为预测变量增加一个单位,同时保持所有其他预测变量固定的对y的平均影响。

例如,对于固定数量的youtube和报纸广告预算,在Facebook广告上花费额外的1000美元,平均可以使销售额增加大约0.1885 * 1000 = 189个销售单位。

youtube系数表明,在所有其他预测变量保持不变的情况下,youtube广告预算每增加1000美元,我们平均可以预期增加0.045 * 1000 = 45个销售单位。

我们发现报纸在多元回归模型中并不重要。这意味着,对于固定数量的youtube和报纸广告预算,报纸广告预算的变化不会显着影响销售单位。

由于报纸变量不重要,因此可以 将其从模型中删除 ,以提高模型精度:

最后,我们的模型公式可以写成如下:。 sales = 3.43+ 0.045*youtube + 0.187*facebook

一旦确定至少一个预测变量与结果显着相关,就应该通过检查模型对数据的拟合程度来继续诊断。此过程也称为拟合优度

可以使用以下三个数量来评估线性回归拟合的整体质量,这些数量显示在模型摘要中:

与预测误差相对应的RSE(或模型 sigma )大致代表模型观察到的结果值和预测值之间的平均差。RSE越低,模型就越适合我们的数据。

将RSE除以结果变量的平均值将为您提供预测误差率,该误差率应尽可能小。

在我们的示例中,仅使用youtube和facebook预测变量,RSE = 2.11,这意味着观察到的销售值与预测值的平均偏差约为2.11个单位。

这对应于2.11 / mean(train.data $ sales)= 2.11 / 16.77 = 13%的错误率,这很低。

R平方(R2)的范围是0到1,代表结果变量中的变化比例,可以用模型预测变量来解释。

对于简单的线性回归,R2是结果与预测变量之间的皮尔森相关系数的平方。在多元线性回归中,R2表示观察到的结果值与预测值之间的相关系数。

R2衡量模型拟合数据的程度。R2越高,模型越好。然而,R2的一个问题是,即使将更多变量添加到模型中,R2总是会增加,即使这些变量与结果之间的关联性很小(James等,2014)。解决方案是通过考虑预测变量的数量来调整R2。

摘要输出中“已调整的R平方”值中的调整是对预测模型中包含的x变量数量的校正。

因此,您应该主要考虑调整后的R平方,对于更多数量的预测变量,它是受罚的R2。

在我们的示例中,调整后的R2为0.88,这很好。

回想一下,F统计量给出了模型的整体重要性。它评估至少一个预测变量是否具有非零系数。

在简单的线性回归中,此检验并不是真正有趣的事情,因为它只是复制了系数表中可用的t检验给出的信息。

一旦我们开始在多元线性回归中使用多个预测变量,F统计量就变得更加重要。

大的F统计量将对应于统计上显着的p值(p <0.05)。在我们的示例中,F统计量644产生的p值为1.46e-42,这是非常重要的。

我们将使用测试数据进行预测,以评估回归模型的性能。

步骤如下:

从上面的输出中,R2为 0.9281111 ,这意味着观察到的结果值与预测的结果值高度相关,这非常好。

预测误差RMSE为 1.612069 ,表示误差率为 1.612069 / mean(testData $ sales) = 1.612069/ 15.567 = 10.35 % ,这很好。

本章介绍了线性回归的基础,并提供了R中用于计算简单和多个线性回归模型的实例。我们还描述了如何评估模型的性能以进行预测。