R语言基础知识笔记

Python012

R语言基础知识笔记,第1张

1、向量是用于存储数值型,字符型或者逻辑型数据的一维数组。执行组合功能的函数为c(),可以用来创建向量。向量可根据位置进行索引,需要用[]。

2、矩阵是一个二维数组,每个元素都拥有相同的模式,可通过函数matrix()创建矩阵。

3、数组是一个可以在两个以上维度存储数据的数据对象。例如,如果创建尺寸(2,3,4)的数组,那么就是创建4个矩形矩阵每个2行3列。数组只能存储数据类型。

4、矩阵和数组一样都只能包含一种数据类型,当有多种模式的数据时,使用数据框就更为方便。数据框可以用函数data.frame () 创建。

5、$  被用来选取一个给定数据框中的某个特定变量

6、attach()绑定数据集,detach()解除数据集。

7、with:attach,detach最好在单独的数据框内使用,在多个同名对象最好不要使用,函数with(),可以再具有多个同名对象的数据框内使用,但是必须加入花括号{},这样就无须担心名称冲突了,但是它也有局限性,赋值仅在此函数的括号内生效。

8、列表是一些对象的有序集合。

9,、数据导入 read.table(),其中header = T,代表第一行为变量名称,不作为数据,header = F相反。sep代表数据分隔符,txt为"\t",csv为","。

10、table函数,用 table() 函数统计因子各水平的出现次数(称为频数或频率)。

>sex = c("女","女","女","男","男")

>table(sex)

>sex

  男 女

  2 3

求众数

>aim = table(sex)[table(sex)==max(table(sex))]

>aim

  女

   3

> max(table(sex))

[1] 3

> table(sex)==max(table(sex))

  sex

  男    女

  FALSE TRUE

11、 无尺度网络: 是指在某一复杂的 系统 中,大部分节点只有少数几个连结,而某些节点却拥有与其他节点的大量连结。这些具有大量连结的节点称为“集散节点”,所拥有的连结可能高达数百、数千甚至数百万。这一特性说明该网络是无尺度的,因此,凡具有这一特性的网络都是无尺度网络。

12、options(stringsAsFactors = F)

#在调用as.data.frame的时,将stringsAsFactors设置为FALSE可以避免character类型自动转化为factor类型。

13、class():查看数据结构:vector、matrix、array、dataframe、list。

14、str():作用用英语来表示是:check classification of viriables,一般用于检查数据框当中有哪些数据。

15、mode() :查看数据元素类型。

16、typeof() :查看数据元素类型,基本等同于mode(),比mode()更为详细。

17、example():假设有一个函数foo,example("foo"),函数foo的使用示例。

18、apropos():列出名称中含有foo的所有可用函数。apropos("foo",mode="function")。

19、data():列出当前已加载包中所含的所有可用示例数据集。

20、ls():列出当前工作空间中的对象。

21、rm():移除(删除)一个或多个对象。

22、history(#):显示最近使用过的#个命令(默认值为25)。

23、options():显示或设置当前选项。有一个收藏文件有介绍options的功能。

24、boxplot():生成盒型图。

25、sum():计算和。sum(x,na.rm = TRUE)。

26、median():计算中位数。

27、cbind():以列结合变量。cbind(x,y,z)。

28、rbind():以行结合变量。

29、vector():以向量形式结合数据。vector(length = 10)。

30、rep():以矩阵形式结合数据。rep(c(1,,2,3),each = 10)

31、seq():生成一个有序的数列。seq(1,10)。

32、dim():矩阵或者cbind输出的维数。dim(Mydata)。

33、scan():从ascii文件中读取数据。scan(file = "test.txt")。

34、write.table():把一个变量写入到ascii文件。write.table(Z,file = "test.txt")。

35、order():确定数据的顺序。order(x)。

36、merge():合并两个数据框。merge(x,y,by = "ID")。

37、str():显示一个对象的内部结构。str(Mydata)。

38、factor():定义变量作为因子。factor(x)。

39、tapply():tapply(X = Veg$R,INDEX = Veg$Transect,FUN = mean).tapply函数根据第二个变量(Transect)的不同水平对第一变量(R)进行了求平均值运算。还可以求sd,var,length等操作。R语言初学者指南P75详细介绍了这个函数。

40、下一页介绍了sapply和lapply。

41、summary():计算基本信息。

42、table():计算列联表,统计因子各水平的出现次数(频数或频率)。table(x,y)。

43、plot():y对x的图形。pch形状,col颜色。

44、par():par(mfrow = c(2,2),mar = c(3,3,2,1))

mfrow生成一个具有4个面板的图形窗口。mar选项指定每个图形周围空白的大小,底部、左侧、顶部、右侧。

45、paste():将变量连接成字符串。paste("a","b",sep = "")。

46、log(): log = "x",log = "y",log = "xy",生成对数轴。

47、%in%:

a<-c(1,3,13,1443,43,43,4,34,3,4,3)

b<-c(1,13,11,1313,434,1)

a%in%b

# 返回内容# 

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

# 取反操作

!(a%in%b)

48、sort()函数是对向量进行从小到大的排序

rank()函数返回的是对向量中每个数值对应的秩

order()函数返回的值表示位置,依次对应的是向量的最小值、次小值、第三小值……最大值等(位置索引)

arrange()函数(需加载dplyr包)针对数据框,返回基于某列排序后的数据框,方便多重依据排序。

49、subset(): df <- data.frame( a = 1:10, b = 2:11, c = 3:12 )

df <- subset(df, select = c(a,c)) #选取列a和c

df <- subset(df, select = -c(a,c) ) #去除列a和c

R语言-v1-基础知识

Iretara  12-17 21:18

以例题的形式简述R语言基础知识

# 读取文件

setwd(" 文件链接的时候,用  /  ")

install.packages(" readxl ")

library(readxl)

library (tidyverse)

hw1_a<- read_excel ("hw1_a.xlsx", col_types=c("numeric", "numeric", "numeric", "numeric", "numeric") )

hw1_b<- read_excel ("hw1_b.xlsx")

#读取csv

library(readr)

hw1_a<- read_csv ("/")

View(hw1_a)

# 描述型函数

hw1_a + hw1_b 表

#描述最小值,最大值,中值,均值,标准差

Str (hw1_a) #查看数据并指出各个 变量的形式

summary (hw1_a) #指出各个变量的形式, 最小值,最大值,中值,均值

library(psych)

describe (hw1_a) #比summary更简便的方法, 可以直接读取标准差等;但是,使用describe不可读取 NA值, 可以尝试使用 Hmisc包中 describe

描述型函数-R

# 连接

hw1_a %>% inner_join (hw1_b, by ="ID")

hw1_a %>% left_join (hw1_b, by ="ID")

hw1_a %>% right_join (hw1_b, by ="ID")

hw1_a %>% full_join (hw1_b, by ="ID")

inner_join<- inner_join (hw1_a,hw1_b, by =“ID”) #报告合并后的 总行数 ,178行

full_join<- full_join (hw1_a,hw1_b, by ="ID")

( nrow (full_join)) #报告合并后的 总行数 ,200行

>  length (full_join$ID)

#找出各个列的 缺失值

i<-NA

a<-NA

for(i in 1:length(full_join[1,])){ a[i]<- sum(is.na( full_join[,i] ) ) }

paste("缺失值是",a)

#缺失值总数

sum(is.na(full_join))

#删除缺失值 na.omit()

full_join1=filter(full_join,!is.na(full_join[2]))

full_join1=filter(full_join1,!is.na(full_join1[3]))

full_join1=filter(full_join1,!is.na(full_join1[4]))

full_join1=filter(full_join1,!is.na(full_join1[5]))

full_join1=filter(full_join1,!is.na(full_join1[6]))

full_join1=filter(full_join1,!is.na(full_join1[7]))

full_join1=filter(full_join1,!is.na(full_join1[8]))

sum(is.na(full_join1))

找出Income中的 极端值 并滤掉对应行的数据

quantile (hw1_a$Income,c(0.025,0.975))

hw1_a2= filter (hw1_a,Income>14168.81 &Income<173030.92)

#使用dplyr进行数据转换

arrange()

>arrange (hw1_a,Income) #默认升序

>arrange(hw1_a, desc (Income)) #desc降序,NA排序一般最后

select()

>select (hw1_a, - (Years_at_Address:Income)) #不要变量

>rename (hw1_a, In_come=Income) #改名

>select(hw1_a,Income, exerything ()) #把Income放在前面

拓例题1:

library(nycflights13)

view(flights)

#counts

(1)

not_cancelled <- flights %>%

filter(! is.na(dep_delay), !is.na(arr_delay))

(2)

not_cancelled %>%

group_by (year,month,day) %>%

summarize (mean=mean(dep_delay))

(3)

delays <- not_cancelled %>%

group_by (tailnum) %>%

summarize (delay=mean(arr_delay))

ggplot (data=delays,mapping=aes(x= delay))+

geom_freqpoly (binwidth=10) #freqpoly

(4)

delays <- not_cancelled %>%

group_by(tailnum) %>%

summarize(delay=mean(arr_delay,na.rm=TRUE), n=n() ) #tailnum的次数

ggplot(data=delays,mapping=aes(x= n, y=delay))+

geom_point(alpha=1/10)

拓例题2:

#请按照价格的均值,产生新的变量price_new, 低于均值为“低价格”,高于均值为“高价格”。 同样对市场份额也是,产生变量marketshare_new, 数值为“低市场份额”和“高市场份额”

price=data1$price

pricebar=mean(price)

price_new= ifelse (price>pricebar,“高价格”,”低价格”)

marketshare=data1$marketshare

marketsharebar=mean(marketshare)

marketshare_new=ifelse(marketshare>marketsharebar ,“高市场份额”,”低市场份额”)

data1= mutate (data1,price_new,marketshare_new)

#可视化

#将Income 对数化

lninc<- log (hw1_a$Income)

#画出直方图和 density curve密度曲线

hist (lninc,prob=T)

lines ( density (lninc),col="blue")

# 添加额外变量 的办法,在 aes()中添加 样式 (color、size、alpha、shape)

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income, alpha= Is_Default))

# 按照Is_Default 增加一个维度,使用明暗程度作为区分方式

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income,

alpha=factor( Is_Default ) ))

#使用形状作为另外一种区分方式

ggplot(data=inner_join)+

geom_point(mapping = aes(x=Years_at_Employer,y= Income,

shape=factor( Is_Default)))

可视化-R

拓展:

#将 flight1 表和 weather1 表根据共同变量进行内连接,随机抽取 100000 行数据, 将生产的结果保存为 flight_weather。 (提示:sample_n()函数,不用重复抽取)

flight_weather <- inner_join(flight1, weather1) %>% sample_n(100000)

# 从 flight_weather表中对三个出发机场按照平均出发延误时间排降序,并将结果保留在 longest_delay表中。把结果展示出来

longest_delay<- flight_weather %>%

group_by(origin) %>%

summarize(delay=mean(dep_delay, na.rm=TRUE )) %>%

arrange(desc(delay))

#根据不同出发地(origin)在平行的 3 个图中画出风速 wind_speed(x 轴)和出发 延误时间 dep_delay(y 轴)的散点图。

ggplot(data= flight_weather) +

geom_point(mapping=aes(x=wind_speed,y=dep_delay))+

facet_grid(.~origin, nrow = 3 ) # 按照class分类,分成3行

#根据 flight_weather 表,画出每个月航班数的直方分布图,x 轴为月份,y 轴是每个 月份航班数所占的比例。

ggplot(data=flight_weather)+

geom_bar(mapping=aes(x=month, y=..prop .., group=1))

#根据 flight_weather 表,画出每个月航班距离的 boxplot 图,x 轴为月份,y 轴为 航行距离, 根据的航行距离的中位数从低到高对 x 轴的月份进行重新排序

ggplot(data=flight_weather)+

geom_boxplot(mapping=aes(x= reorder (month,distance,FUN=median),y=distance))

线性回归

# 以Income作为因变量,Years at Employer作为自变量,进行 OLS回归

m1<- lm (Income ~ Years_at_Employer,data=hw1_a)

#通过***判断显著性

summary (m1)

#画出拟合直线

ggplot(data= hw1_a)+

geom_point(aes(x=Income,y=Years_at_Employer))+

geom_abline(data= m1,col= "blue")

#证明拟合直线是最优的

b0=runif(20000,-5,5)

b1=runif(20000,-5,5)

d<-NA

sum<-NA

n<-1

while(n<=20000){

for(i in 1:24){

d[i]<-(hw1_a $ Income[i]-b0[n]-b1[n]*hw2$ Years_at_Employer[i])^2}

sum[n]<-sum(d)

n<-n+1

}

resi=m1$residuals

resi2=sum(resi^2)

check=sum(as.numeric(sum<resi2))

check