R语言实现bootstrap和jackknife检验方法

Python011

R语言实现bootstrap和jackknife检验方法,第1张

写在最前面:

首先需要说一下,本文的bootstrap和jackknife都算是蒙特卡罗方法(Monte Carlo method)的一种。应用广泛的的MCMC链(马尔可夫链蒙特卡洛方法Markov chain Monte Carlo)也是蒙特卡罗与马尔可夫链的结合。简单来说,蒙特卡罗方法就是从已知样本的分布中随机抽取新的样本集进行评估,然后放回,再次抽取的方法。根据具体方法的不同,抽取样本集的手段也不同。

bootstrap抽样方法将观测到的样本视为一个有限的总体,是唯一的信息来源,从中有放回的随机抽样来评估总体特征,以及对抽样总体进行推断统计。bootstrap 也分参数bootstrap和非参数bootstrap,前者的分布已完全知道。但在生信领域一般没有这种情况。所以下面讨论的是非参数bootstrap。

直接上例子:

假设现在有bootstrap包中的law数据集如下,

现在我们要计算LSAT成绩(美国法学入学考试)和GPA之间的相关系数。但因为样本量太少了,所以我们使用bootstrap重复抽样评估其标准误。

200次循环抽样后,计算得se.R标准误为0.1474629

得到如下的图:

1e6次循环抽样后,计算得se.R标准误为0.1333802

得到如下的图:

如果用bootstrap包的bootstrap函数会快一些:

bootstrap函数的用法: bootstrap(抽取样本范围,重复次数,进行bootstrap的函数,bootstrap的数据集)

偏差定义为bootstrap结果(多个数值)与原数据统计结果(单个数值)的均值:

得到bias大约为0.001817608,比较小

换一个包,boot包

这里用了三种方法计算置信区间:basic、正态和百分数。样本相关系数分布接近正态,则正态置信区间接近百分数区间。此外还有“Better Bootstrap Confivendence Interval” 更好的bootstrap置信区间,称为BCa区间,使用偏差和偏度对百分数置信区间进行矫正。设置type="bca"即可。

简单的说,bootstrap是从原有真实样本中有放回地抽取n个。jacknife就是每次都抽取n-1个样本,也就是每次只剔除一个原样本。

同样地,如果以bootstrap包中的law数据进行演示:

Jackknife计算的bias为-0.006473623。 这里jackknife的偏差公式相比于bootstrap有一个(n-1)系数,推导就不写了。

标准误se为0.1425186,与bootstrap得出的比较接近。

当统计量不太平滑的时候,Jacknife有很大误差。比如说对中位数进行统计,其变化很大。在进行Jacknife之后最好再跑一次bootstrap,看看是否相差很大。

居然还能这么嵌套着玩,针对每次bootstrap形成的数列向量计算jackknife的标准差,这样可以看出bootstrap若干次取样之间的差异。

算出来分别为0.1344824和0.08545141。后者较小,表面bootstrap取样之间的variance较小。

简单来说就是一种数据分割检验的方法,将数据分割为K份,称为"K-fold"交叉检验,每次第i个子集作为测试集来评估模型,其余的用来构建模型。Admixture使用的就是这个原理。Jackknife也属于Cross Validation的应用之一。

现在我创建一个这样的alignment:

这棵树长这样,符合遗传距离:

进行bootstrap:

phylogeny的bootstrap是对每一个节点都进行bootstrap取样并建树,比如说在9号节点,查看其bootstrap子集建的树符合系统发育关系((human2,human4,human3)(human8,human1,human6,human7,human5))的百分比(不管内部怎么样,先看这个节点)。发现Node1支持率是100(1000次都符合)。而后移到下一个节点,并且只看节点内部的分支支持率是多少。

其实原理都比较简单,计算bootstrap也会有专门的软件。

参考资料:

1)中科大张伟平教授课件

2) https://ecomorph.wordpress.com/2014/10/09/phylogenetic-trees-in-r-4/

原文链接:http://tecdat.cn/?p=19664

MCMC是从复杂概率模型中采样的通用技术。

蒙特卡洛

马尔可夫链

Metropolis-Hastings算法

问题

如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值。

请点击输入图片描述

您可能需要计算后验概率分布p(θ)的最大值。

请点击输入图片描述

解决期望值的一种方法是从p(θ)绘制N个随机样本,当N足够大时,我们可以通过以下公式逼近期望值或最大值

请点击输入图片描述

将相同的策略应用于通过从p(θ| y)采样并取样本集中的最大值来找到argmaxp(θ| y)。

解决方法

1.1直接模拟

1.2逆CDF

1.3拒绝/接受抽样

如果我们不知道精确/标准化的pdf或非常复杂,则MCMC会派上用场。

马尔可夫链

请点击输入图片描述

为了模拟马尔可夫链,我们必须制定一个 过渡核T(xi,xj)。过渡核是从状态xi迁移到状态xj的概率。

马尔可夫链的收敛性意味着它具有平稳分布π。马尔可夫链的统计分布是平稳的,那么它意味着分布不会随着时间的推移而改变。

Metropolis算法

对于一个Markov链是平稳的。基本上表示

处于状态x并转换为状态x'的概率必须等于处于状态x'并转换为状态x的概率

请点击输入图片描述

或者

请点击输入图片描述

方法是将转换分为两个子步骤;候选和接受拒绝。

令q(x'| x)表示 候选密度,我们可以使用概率 α(x'| x)来调整q  。

候选分布 Q(X'| X)是给定的候选X的状态X'的条件概率,

和 接受分布 α(x'| x)的条件概率接受候选的状态X'-X'。我们设计了接受概率函数,以满足详细的平衡。

该 转移概率 可以写成:

请点击输入图片描述

插入上一个方程式,我们有

请点击输入图片描述

Metropolis-Hastings算法

A的选择遵循以下逻辑。

请点击输入图片描述

在q下从x到x'的转移太频繁了。因此,我们应该选择α(x | x')=1。但是,为了满足 细致平稳,我们有

请点击输入图片描述

下一步是选择满足上述条件的接受。Metropolis-Hastings是一种常见的 选择:

请点击输入图片描述

即,当接受度大于1时,我们总是接受,而当接受度小于1时,我们将相应地拒绝。因此,Metropolis-Hastings算法包含以下内容:

初始化:随机选择一个初始状态x;

根据q(x'| x)随机选择一个新状态x'

3.接受根据α(x'| x)的状态。如果不接受,则不会进行转移,因此无需更新任何内容。否则,转移为x';

4.转移到2,直到生成T状态;

5.保存状态x,执行2。

原则上,我们从分布P(x)提取保存的状态,因为步骤4保证它们是不相关的。必须根据候选分布等不同因素来选择T的值。 重要的是,尚不清楚应该使用哪种分布q(x'| x);必须针对当前的特定问题进行调整。

属性

Metropolis-Hastings算法的一个有趣特性是它 仅取决于比率

请点击输入图片描述

是候选样本x'与先前样本xt之间的概率,

请点击输入图片描述

是两个方向(从xt到x',反之亦然)的候选密度之比。如果候选密度对称,则等于1。

马尔可夫链从任意初始值x0开始,并且算法运行多次迭代,直到“初始状态”被“忘记”为止。这些被丢弃的样本称为预烧(burn-in)。其余的x可接受值集代表分布P(x)中的样本

Metropolis采样

一个简单的Metropolis-Hastings采样

让我们看看从 伽玛分布 模拟任意形状和比例参数,使用具有Metropolis-Hastings采样算法。

下面给出了Metropolis-Hastings采样器的函数。该链初始化为零,并在每个阶段都建议使用N(a / b,a /(b * b))个候选对象。

请点击输入图片描述

基于正态分布且均值和方差相同gamma的Metropolis-Hastings独立采样

从某种状态开始xt。代码中的x。

在代码中提出一个新的状态x'候选

计算“接受概率”

请点击输入图片描述

请点击输入图片描述

从[0,1] 得出一些均匀分布的随机数u;如果u <α接受该点,则设置xt + 1 = x'。否则,拒绝它并设置xt + 1 = xt。

MH可视化

set.seed(123)for (i in 2:n) {can <- rnorm(1, mu, sig)aprob <- min(1, (dgamma(can, a, b)/dgamma(x, a, b))/(dnorm(can, mu, sig)/dnorm(x, mu, sig)))u <- runif(1)if (u <aprob) x <- canvec[i] <- x

画图

设置参数。

nrep<- 54000burnin<- 4000shape<- 2.5rate<-2.6

修改图,仅包含预烧期后的链

vec=vec[-(1:burnin)]#vec=vec[burnin:length(vec)]

par(mfrow=c(2,1)) # 更改主框架,在一帧中有多少个图形plot(ts(vec), xlab="Chain", ylab="Draws")abline(h = mean(vec), lwd="2", col="red" )

请点击输入图片描述

Min.  1st Qu.   Median     Mean  3rd Qu.     Max.0.007013 0.435600 0.724800 0.843300 1.133000 3.149000

var(vec[-(1:burnin)])

[1] 0.2976507

初始值

第一个样本 vec 是我们链的初始/起始值。我们可以更改它,以查看收敛是否发生了变化。

x <- 3*a/bvec[1] <- x

选择方案

如果候选密度与目标分布P(x)的形状匹配,即q(x'| xt)≈P(x')q(x'|),则该算法效果最佳。 xt)≈P(x')。如果使用正态候选密度q,则在预烧期间必须调整方差参数σ2。

通常,这是通过计算接受率来完成的,接受率是在最后N个样本的窗口中接受的候选样本的比例。

如果σ2太大,则接受率将非常低,因为候选可能落在概率密度低得多的区域中,因此a1将非常小,且链将收敛得非常慢。

示例2:回归的贝叶斯估计

Metropolis-Hastings采样用于贝叶斯估计回归模型。

请点击输入图片描述

设定参数

DGP和图

# 创建独立的x值,大约为零x <- (-(Size-1)/2):((Size-1)/2)# 根据ax + b + N(0,sd)创建相关值y <-  trueA * x + trueB + rnorm(n=Size,mean=0,sd=trueSd)

请点击输入图片描述

正态分布拟然

pred = a*x + bsinglelikelihoods = dnorm(y, mean = pred, sd = sd, log = T)sumll = sum(singlelikelihoods)

为什么使用对数

似然函数中概率的对数,这也是我求和所有数据点的概率(乘积的对数等于对数之和)的原因。

我们为什么要做这个?强烈建议这样做,因为许多小概率相乘的概率会变得很小。在某个阶段,计算机程序会陷入数值四舍五入或下溢问题。

因此, 当您编写概率时,请始终使用对数

示例:绘制斜率a的似然曲线

# 示例:绘制斜率a的似然曲线plot (seq(3, 7, by=.05), slopelikelihoods , type="l")

请点击输入图片描述

先验分布

这三个参数的均匀分布和正态分布。

# 先验分布# 更改优先级,log为True,因此这些均为logdensity/likelihoodaprior = dunif(a, min=0, max=10, log = T)bprior = dnorm(b, sd = 2, log = T)sdprior = dunif(sd, min=0, max=30, log = T)

后验

先验和概率的乘积是MCMC将要处理的实际量。此函数称为后验函数。同样,这里我们使用和,因为我们使用对数。

posterior <- function(param){return (likelihood(param) + prior(param))}

Metropolis算法

该算法是从 后验密度中采样最常见的贝叶斯统计应用之一 。

上面定义的后验。

从随机参数值开始

根据某个候选函数的概率密度,选择一个接近旧值的新参数值

以概率p(new)/ p(old)跳到这个新点,其中p是目标函数,并且p>1也意味着跳跃

请注意,我们有一个 对称的跳跃/候选分布 q(x'| x)。

请点击输入图片描述

标准差σ是固定的。

请点击输入图片描述

所以接受概率等于

请点击输入图片描述

######## Metropolis 算法 ################for (i in 1:iterations){probab = exp(posterior(proposal) - posterior(chain[i,]))if (runif(1) <probab){chain[i+1,] = proposal}else{chain[i+1,] = chain[i,]}

实施

(e)输出接受的值,并解释。

chain = metrMCMC(startvalue, 5500)burnIn = 5000accep = 1-mean(duplicated(chain[-(1:burnIn),]))

算法的第一步可能会因初始值而有偏差,因此通常会被丢弃来进行进一步分析(预烧期)。令人感兴趣的输出是接受率:候选多久被算法接受拒绝一次?候选函数会影响接受率:通常,候选越接近,接受率就越大。但是,非常高的接受率通常是无益的:这意味着算法在同一点上“停留”,这导致对参数空间(混合)的处理不够理想。

我们还可以更改初始值,以查看其是否更改结果/是否收敛。

startvalue = c(4,0,10)

小结

V1              V2                V3        Min.   :4.068   Min.   :-6.7072   Min.   : 6.787  1st Qu.:4.913   1st Qu.:-2.6973   1st Qu.: 9.323  Median :5.052   Median :-1.7551   Median :10.178  Mean   :5.052   Mean   :-1.7377   Mean   :10.385  3rd Qu.:5.193   3rd Qu.:-0.8134   3rd Qu.:11.166  Max.   :5.989   Max.   : 4.8425   Max.   :19.223  

#比较:summary(lm(y~x))

Call:lm(formula = y ~ x)Residuals:Min      1Q  Median      3Q     Max -22.259  -6.032  -1.718   6.955  19.892 Coefficients:Estimate Std. Error t value Pr(>|t|)    (Intercept)  -3.1756     1.7566  -1.808    0.081 .  x             5.0469     0.1964  25.697   <2e-16 ***---Signif. codes:  0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1Residual standard error: 9.78 on 29 degrees of freedomMultiple R-squared:  0.9579,    Adjusted R-squared:  0.9565 F-statistic: 660.4 on 1 and 29 DF,  p-value: <2.2e-16

summary(lm(y~x))$sigma

[1] 9.780494

coefficients(lm(y~x))[1]

(Intercept)-3.175555

coefficients(lm(y~x))[2]

x 5.046873

总结:

### 总结: #######################par(mfrow = c(2,3))hist(chain[-(1:burnIn),1],prob=TRUE,nclass=30,col="109" abline(v = mean(chain[-(1:burnIn),1]), lwd="2")

请点击输入图片描述

请点击输入图片描述

最受欢迎的见解

1.用R语言模拟混合制排队随机服务排队系统

2.R语言中使用排队论预测等待时间

3.R语言中实现马尔可夫链蒙特卡罗MCMC模型

4.R语言中的马尔科夫机制转换(Markov regime switching)模型

5.matlab贝叶斯隐马尔可夫hmm模型

6.用R语言模拟混合制排队随机服务排队系统

7.Python基于粒子群优化的投资组合优化

8.R语言马尔可夫转换模型研究交通伤亡人数事故预测

9.用机器学习识别不断变化的股市状况——隐马尔可夫模型的应用