如何用r语言进行神经网络统计分析

Python012

如何用r语言进行神经网络统计分析,第1张

library(nnet)

source <- c(10930,10318,10595,10972,7706,6756,9092,10551,9722,10913,11151,8186,6422,

6337,11649,11652,10310,12043,7937,6476,9662,9570,9981,9331,9449,6773,6304,9355,10477,

10148,10395,11261,8713,7299,10424,10795,11069,11602,11427,9095,7707,10767,12136,12812,

12006,12528,10329,7818,11719,11683,12603,11495,13670,11337,10232,13261,13230,15535,

16837,19598,14823,11622,19391,18177,19994,14723,15694,13248,9543,12872,13101,15053,

12619,13749,10228,9725,14729,12518,14564,15085,14722,11999,9390,13481,14795,15845,

15271,14686,11054,10395,14775,14618,16029,15231,14246,12095,10473,15323,15381,14947)

srcLen<-length(source)

for(i in 1:10){ #预测最后十个数;

real <- source[srcLen-i+1] #实际值

xNum=(srcLen-i+1)%/%7 #组数

yNum=7 #每组7个数

data<-array(1:(xNum*yNum),c(xNum,yNum))

pre=srcLen-i+1

for(x in 1:xNum){ #数组赋值

for(y in 1:yNum){

data[x,y]=source[pre]

pre=pre-1

}

if(pre<7){

break

}

}

ascData<-array(1:(xNum*yNum),c(xNum,yNum)) #数组逆序

for(x in 1:xNum){

for(y in 1:yNum){

ascData[x,y]=data[xNum-x+1,y]

}

}

colnames(ascData) <- c("a","b","c","d","e","f","g") #每列列名

trainData<-data.frame(scale(ascData[,c(1:7)]))

nn<-nnet(a~b+c+d+e+f+g,trainData[1:(xNum-1),],size=10,decay=0.01,maxit=1000,linout=F,trace=F)

predict<-predict(nn,trainData[xNum,])

predict=predict*sd(ascData[,1])+mean(ascData[,1])

percent <- (predict-real)*100/real

res <- paste("预测值:",predict,"实际值:",real,"误差:",percent)

print(res)

}

第一步:获取要绘图的整洁数据(涉及到数据整洁和操作的知识)

第二步:整洁数据做映射操作,确定x,y,color,size,shape,alpha等

第三步:选择合适的几何对象(根据画图的目的、变量的类型和个数)

第四步:坐标系和刻度配置

第五步:标签信息和图例信息

第六步:选择合适的主题

ggplot2的语法包括10个部件。

数据(data)

映射(mapping)

几何对象(geom)

标度(scale)

统计变换(stats)

坐标系(coord)

位置调整(Position adjustments)

分面(facet)

主题(theme)

输出(output)

前3个是必须的,其它部件ggplot2会自动配置,也可以手动配置

ggplot2基本绘图模板:

注意:

1)添加图层的加号(+)只能放在行末尾

2)红色方框里面mapping是全局域,绿色方框里面mapping是局部域,执行先后顺序,先局部域,后全局域

ggplot2画图必要部件-数据,映射和几何对象

2.1 数据

数据(Data)用于画图的整洁数据

library(tidyverse

ggplot()先只提供数据,创建一个空图形。

# ggplot()先提供整洁数据,生成一个空图形

2映射

映射,把数据变量集与图形属性库建立关联。

最常用的映射有:

x:x轴

y:y轴

color:颜色

size:大小

shape:形状

fill:填充

alpha:透明度

以mpg数据集为例,把变量displ和hwy分别映射到x和y,变量drv映射到color,此时图形就有了坐标轴和网格线,color需要在有了几何对象后才能体现出来。

# 映射操作

ggplot(data = mpg, mapping = aes(x = displ,

y = hwy, color = drv))

2.3 几何对象

几何对象是表达数据的视觉对象

不同类型的几何对象是从不同的角度表达数据。

pgglot2提供了50多种“几何对象”,均以geom_xxxx()的方式命名,常用的有:

几何对象很简单,只需要添加图层即可。

例如,以mpg数据集为例,画散点图。

ggplot(data = mpg, mapping = aes(x = displ,

y = hwy,

color = drv)) +

geom_point()层依次叠加,在上图的基础上,再添加一个几何对象:光滑曲线。

#继续增加一个几何对象:光滑曲线

# 写法1

ggplot(data = mpg, mapping = aes(x = displ,

y = hwy,

color = drv)) +

geom_point() +

geom_smooth(se=FALSE)

# 写法2

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +

geom_smooth(se=FALSE)

思考题:

1)写法1和写法2的差异?(全局域和局部域的使用差异)

2)写法2若是要实现写法1的功能,怎么编写代码?

03

标度

ggplot2会自动根据输入变量选择最优的坐标刻度方法,若要手动设置或调整,就需要使用标度函数

标度函数用来控制几何对象中的标度映射(x轴,y轴或者由color,fill,shape,size产生的图例)。

ggplot2提供丰富的标度函数,常用的有:

拓展功能:scales包提供很多设置刻度标签风格的函数,比如百分数、科学计数法法、美元格式等。

3.1 修改坐标轴刻度及标签

连续变量使用scale_*_continuous()函数,参数breaks设置各个刻度的位置,参数labels设置各个刻度对应的标签。

离散变量使用scale_*_discrete()函数,修改离散变量坐标轴的标签。

时间变量使用scale_x_date()函数设置日期刻度,参数date_breaks设置刻度间隔,date_labels设置标签的日期格式

以mpg数据集为例,修改连续变量坐标轴刻度及标签。

# scale_y_continuous函数

# 对比分析和观察

# 图1

ggplot(mpg, aes(displ, hwy)) +

geom_point()

# 图2

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_y_continuous(breaks = seq(15, 40, by = 10))

# 图3

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

scale_y_continuous(breaks = seq(15, 40, by = 10),

labels = c(" 一五 "," 二五 "," 三五 "))

以mpg数据集为例,修改离散变量的标签

# scale_x_discrete函数

# 对比分析和观察

# 图1

ggplot(mpg, aes(x = drv)) +

geom_bar()

# 图2

ggplot(mpg, aes(x = drv)) +

geom_bar() +

scale_x_discrete(labels = c("4" = " 四驱 ", "f" = " 前驱 ",

"r" = " 后驱 "))

以ggplot2自带的economics数据集为例,修改日期变量。

# scale_x_date函数

# 以ggplot2自带的economics为例

economics %>% glimpse()

# 图1

ggplot(tail(economics, 45), aes(date, uempmed / 100)) +

geom_line()

# 图2

ggplot(tail(economics, 45), aes(date, uempmed / 100)) +

geom_line() +

scale_x_date(date_breaks = "6 months", date_labels = "%Y-%b") +

scale_y_continuous(labels = scales::percent)

3.2 修改坐标轴标签、图例名及图例位置

用labs()函数参数x,y或者xlab(),ylab(),设置x轴,y轴标签。

若用参数color生成了图例,可以在labs()函数用参数color修改图例名。

用theme图层的参数legend.position设置图例的位置。

以mpg数据为例。

# 修改坐标轴标签,图例名和图例位置

mpg

# 图1

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

labs(x = " 引擎大小 (L)", y = " 高速燃油率 (mpg)",

color = " 驱动类型 ") +

theme(legend.position = "top")

# 图2

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

xlab(" 引擎大小 (L)") +

ylab(" 高速燃油率 (mpg)") +

labs(color = " 驱动类型 ") +

theme(legend.position = "top")

# 图3 不需要图例

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

xlab(" 引擎大小 (L)") +

ylab(" 高速燃油率 (mpg)") +

theme(legend.position = "none")

3.3 设置坐标轴的范围

用coord_cartesian()函数参数xlim和ylim,或者用xlim(),ylim()设置x轴和y轴的范围。

以mpg数据集为例。

# 修改坐标轴的范围

# 图1 coord_cartesian()的参数xlim和ylim

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

coord_cartesian(xlim = c(5, 7), ylim = c(10, 30))

# 图2 xlim()和ylim()函数

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

xlim(5, 7) +

ylim(10, 30)

3.4 变换坐标轴

用scale_x_log10()函数变换坐标系,可以保持原始数据的坐标刻度。

# 修改坐标轴的范围

# 图1 coord_cartesian()的参数xlim和ylim

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

coord_cartesian(xlim = c(5, 7), ylim = c(10, 30))

# 图2 xlim()和ylim()函数

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

xlim(5, 7) +

ylim(10, 30)

3.5 设置图形标题

用labs()函数设置图形标题。

参数title 设置正标题

参数subtitle 设置副标题

参数caption 设置脚注标题(默认右下角)

# 设置标题

# mpg数据集为例

p <- ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = drv)) +

geom_smooth(se = FALSE) +

labs(title = " 燃油效率与引擎大小的关系图 ",

subtitle = " 两座车 ( 跑车 ) 因重量小而符合预期 ",

caption = " 数据来自 fueleconomy.gov")

p

标题若要居中,采用theme图层设置。

p + theme(plot.title = element_text(hjust = 0.5),

plot.subtitle = element_text(hjust = 0.5))

3.6 设置color、fill颜色

数据的某个维度信息可以通过颜色来表示。

可以直接使用颜色值,建议使用RColorBrewer(调色板)或者colorspace包。

1)连续变量

- 用scale_color_gradient()设置二色渐变色。

# 连续变量

# 图1 scale_color_gradient()函数

ggplot(mpg, aes(displ, hwy, color = hwy)) +

geom_point() +

scale_color_gradient(low = "green", high = "red")

- 用scale_color_distiller()设置调色板中的颜色

# 图2 scale_color_distiller()函数

ggplot(mpg, aes(displ, hwy, color = hwy)) +

geom_point() +

scale_color_distiller(palette = "Set1")

2)离散变量

- 用scale_color_manual()手动设置颜色,还可以修改图例及其标签信息

# 离散变量

# 图1 scale_color_manual()函数

ggplot(mpg, aes(displ, hwy, color = drv)) +

geom_point() +

scale_color_manual(" 驱动方式 ",

values = c("red", "blue", "green"),

breaks = c("4", "f", "r"))

ggplot(mpg, aes(displ, hwy, color = drv)) +

geom_point() +

scale_color_manual(" 驱动方式 ",

values = c("red", "blue", "green"),

labels = c(" 四驱 ", " 前驱 ", " 后驱 "))

-用scale_fill_brewer()调用调色板中的颜色

# 图2 scale_fill_brewer()函数

ggplot(mpg, aes(x = class, fill = class)) +

geom_bar() +

scale_fill_brewer(palette = "Dark2")

.7 添加文字标注

ggrepel包提供了geom_label_repel()函数或者geom_text_repel()函数,为图形添加文字标注。

操作步骤:

第一步:先准备好标记点的数据

第二步:增加文字标注图层,包括标记点的数据和标注的文字给label参数

# 设置文字标注信息

library(ggrepel)

# 选取每种车型 hwy 值最大的样本

best_in_class <- mpg %>%

group_by(class) %>%

slice_max(hwy, n = 1)

best_in_class %>% select(class, model, hwy)

ggplot(mpg, aes(displ, hwy)) +

geom_point(aes(color = class)) +

geom_label_repel(data = best_in_class,

aes(label = model))

04

计变换、坐标系和位置调整

.1 统计变换

统计变换是构建新的统计量而画图。

例如,条形图或直方图,是对数据分组的频数做画图;平滑曲线是对数据拟合模型的预测值画图。

gplot2可以把统计变换直接融入画图中,不必先在对数据做统计变换后再画图。

gplot2提供30多种统计,均以stats_xxx()的方式命名。

1)可在几何对象中直接使用的统计变换,直接使用几何对象就可以了。

能在几何对象创建的,而需要单独使用。

mpg数据集为例。

stat_summary()做统计绘图并汇总。

# 图1 stat_summary()做统计绘图并汇总

p <- ggplot(mpg, aes(x = class, y = hwy)) +

geom_violin(trim = FALSE, alpha = 0.5, color = "green")

p

p + stat_summary(fun = mean,

fun.min = function (x) {mean(x) - sd(x)},

fun.max = function (x) {mean(x) + sd(x)},

geom = "pointrange",

color = "red")

tat_smooth()添加光滑曲线,与geom_smooth()相同。

参数method设置平滑曲线的拟合方法,如lm线性回归、glm广义线性回归、loess多项式回归、gam广义加法模型(mgcv包)、rlm稳健回归(MASS包)等。

参数formula指定平滑曲线方程,如y ~ x, y ~ poly(x, 2), y ~ log(x)等。

参数se设置是否绘制置信区间。

# 图2 stat_smooth()添加平滑曲线

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

stat_smooth(method = "lm",

formula = y ~ splines::bs(x, 3),

se = FALSE)

ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(method = "lm",

formula = y ~ splines::bs(x, 3),

se = FALSE)

4.2 坐标系

ggplot2默认是直角坐标系。

- coord_cartesian()

常用的其它坐标系:

以mpg数据集为例,坐标轴翻转。

# 图1 坐标轴翻转coord_flip()

p <- ggplot(mpg, aes(class, hwy)) +

geom_boxplot()

p

p + coord_flip()

直角坐标下条形图转换为极坐标下玫瑰图。

# 图2 直角坐标条形图-->极坐标玫瑰图

p <- ggplot(mpg, aes(class, fill = drv)) +

geom_bar()

p

p + coord_polar()

4.3 位置调整

条形图的位置调整

# 图1:条形图条形位置调整

ggplot(mpg, aes(class, fill = drv)) +

geom_bar()

ggplot(mpg, aes(class, fill = drv)) +

geom_bar(position = "dodge")

ggplot(mpg, aes(class, fill = drv)) +

geom_bar(position = position_dodge(preserve = "single"))

散点图的散点位置调整

# 图1:散点图的散点位置调整

ggplot(mpg, aes(displ, hwy)) +

geom_point()

ggplot(mpg, aes(displ, hwy)) +

geom_point(position = "jitter")

用patchwork包排布多个图形

library(patchwork)

p1 <- ggplot(mpg, aes(displ, hwy)) +

geom_point()

p2 <- ggplot(mpg, aes(drv, displ)) +

geom_boxplot()

p3 <- ggplot(mpg, aes(drv)) +

geom_bar()

p1 | (p2 / p3)

p1 | p2 | p3

p1 / p2 / p3

p1 / (p2 | p3)

05

分面

利用分类变量把图形分成若干“子图”(面),实际上就是对数据分组后再画图,属于数据分析里面细分和下钻的思想。

5.1 用facet_wrap()函数

封装分面,先生成一维的面板系列,再封装到二维中。

语法形式:~ 分类变量 或者 ~ 分类变量1 + 分类变量2

参数scales设置是否共用坐标刻度,fixed 默认 共用, free 不共用,还可以额通过free_x,free_y单独设置。

下游分析

cellranger count 计算的结果只能作为错略观测的结果,如果需要进一步分析聚类细胞,还需要进行下游分析,这里使用官方推荐 R 包(Seurat 3.0)

流程参考官方外周血分析标准流程( https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html )

Rstudio操作过程:

## 安装seurat

install.packages('Seurat')

## 载入seurat包

library(dplyr)

library(Seurat)

## 读入pbmc数据(文件夹路径不能包含中文,注意“/“的方向不能错误,这里读取的是10x处理的文件,也可以处理其它矩阵文件,具体怎样操作现在还不知道,文件夹中的3个文件分别是:barcodes.tsv,genes.tsv,matrix.mtx,文件的名字不能错,否则读取不到)

pbmc.data <- Read10X(data.dir = "D:/pbmc3k_filtered_gene_bc_matrices/filtered_gene_bc_matrices/hg19/")

## 查看稀疏矩阵的维度,即基因数和细胞数

dim(pbmc.data)

pbmc.data[1:10,1:6]

## 创建Seurat对象与数据过滤,除去一些质量差的细胞(这里读取的是单细胞 count 结果中的矩阵目录;在对象生成的过程中,做了初步的过滤;留下所有在>=3 个细胞中表达的基因 min.cells = 3;留下所有检测到>=200 个基因的细胞 min.genes = 200。)

pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)

pbmc

##计算每个细胞的线粒体基因转录本数的百分比(%),使用[[ ]] 操作符存放到metadata中,mit-开头的为线粒体基因

pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")

##展示基因及线粒体百分比(这里将其进行标记并统计其分布频率,"nFeature_RNA"为基因数,"nCount_RNA"为细胞数,"percent.mt"为线粒体占比)

VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")

plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")

CombinePlots(plots = list(plot1, plot2))

## 过滤细胞:根据上面小提琴图中基因数"nFeature_RNA"和线粒体数"percent.mt",分别设置过滤参数,这里基因数 200-2500,线粒体百分比为小于 5%,保留gene数大于200小于2500的细胞;目的是去掉空GEMs和1个GEMs包含2个以上细胞的数据;而保留线粒体基因的转录本数低于5%的细胞,为了过滤掉死细胞等低质量的细胞数据。

pbmc <- subset(pbmc, subset = nFeature_RNA >200 &nFeature_RNA <2500 &percent.mt <5)

## 表达量数据标准化,LogNormalize的算法:A = log( 1 + ( UMIA ÷ UMITotal ) × 10000

pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)

#pbmc <- NormalizeData(pbmc) 或者用默认的

## 鉴定表达高变基因(2000个),用于下游分析,如PCA;

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

## 提取表达量变化最高的10个基因;

top10 <- head(VariableFeatures(pbmc), 10)

top10

plot1 <- VariableFeaturePlot(pbmc)

plot2 <- LabelPoints(plot = plot1, points = top10)

CombinePlots(plots = list(plot1, plot2))

plot1<-VariableFeaturePlot(object=pbmc)

plot2<-LabelPoints(plot=plot1,points=top10,repel=TRUE)

CombinePlots(plots=list(plot1,plot2))

## PCA分析:

# PCA分析数据准备,使用ScaleData()进行数据归一化;默认只是标准化高变基因(2000个),速度更快,不影响PCA和分群,但影响热图的绘制。

#pbmc <- ScaleData(pbmc,vars.to.regress ="percent.mt")

## 而对所有基因进行标准化的方法如下:

all.genes <- rownames(pbmc)

pbmc <- ScaleData(pbmc, features = all.genes)

pbmc <- ScaleData(pbmc, vars.to.regress = "percent.mt")

## 线性降维(PCA),默认用高变基因集,但也可通过features参数自己指定;

pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))

## 展示 pca 结果(最简单的方法)

DimPlot(object=pbmc,reduction="pca")

## 检查PCA分群结果, 这里只展示前5个PC,每个PC只显示5个基因;

print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)

##PC_ 1 

##Positive:  RPS27, MALAT1, RPS6, RPS12, RPL13 

##Negative:  CSTA, FCN1, CST3, LYZ, LGALS2 

##PC_ 2 

##Positive:  NKG7, GZMA, CST7, KLRD1, CCL5 

##Negative:  RPL34, RPL32, RPL13, RPL39, LTB 

##PC_ 3 

##Positive:  MS4A1, CD79A, BANK1, IGHD, CD79B 

##Negative:  IL7R, RPL34, S100A12, VCAN, AIF1 

##PC_ 4 

##Positive:  RPS18, RPL39, RPS27, MALAT1, RPS8 

##Negative:  PPBP, PF4, GNG11, SDPR, TUBB1 

##PC_ 5 

##Positive:  PLD4, FCER1A, LILRA4, SERPINF1, LRRC26 

##Negative:  MS4A1, CD79A, LINC00926, IGHD, FCER2 

## 展示主成分基因分值

VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")

## 绘制pca散点图

DimPlot(pbmc, reduction = "pca")

## 画第1个或15个主成分的热图;

DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)

DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

## 确定数据集的分群个数

# 鉴定数据集的可用维度,方法1:Jackstraw置换检验算法;重复取样(原数据的1%),重跑PCA,鉴定p-value较小的PC;计算‘null distribution’(即零假设成立时)时的基因scores。虚线以上的为可用维度,也可以调整 dims 参数,画出所有 pca 查看。

#pbmc <- JackStraw(pbmc, num.replicate = 100)

#pbmc <- ScoreJackStraw(pbmc, dims = 1:20)

#JackStrawPlot(pbmc, dims = 1:15)

# 方法2:肘部图(碎石图),基于每个主成分对方差解释率的排名。

ElbowPlot(pbmc)

## 细胞聚类:分群个数这里选择10,建议尝试选择多个主成分个数做下游分析,对整体影响不大;在选择此参数时,建议选择偏高的数字(为了获取更多的稀有分群,“宁滥勿缺”);有些亚群很罕见,如果没有先验知识,很难将这种大小的数据集与背景噪声区分开来。

## 非线性降维(UMAP/tSNE)基于PCA空间中的欧氏距离计算nearest neighbor graph,优化任意两个细胞间的距离权重(输入上一步得到的PC维数) 。

pbmc <- FindNeighbors(pbmc, dims = 1:10)

## 接着优化模型,resolution参数决定下游聚类分析得到的分群数,对于3K左右的细胞,设为0.4-1.2 能得到较好的结果(官方说明);如果数据量增大,该参数也应该适当增大。

pbmc <- FindClusters(pbmc, resolution = 0.5)

## 使用Idents()函数可查看不同细胞的分群;

head(Idents(pbmc), 5)

## 结果:AAACCTGAGGTGCTAG    AAACCTGCAGGTCCAC    AAACCTGCATGGAATA AAACCTGCATGGTAGG      AAACCTGCATTGGCGC 

               1                3                0               10                2 

Levels: 0 1 2 3 4 5 6 7 8 9 10 11

## Seurat提供了几种非线性降维的方法进行数据可视化(在低维空间把相似的细胞聚在一起),比如UMAP和t-SNE,运行UMAP需要先安装'umap-learn'包,这里不做介绍,两种方法都可以使用,但不要混用,如果混用,后面的结算结果会将先前的聚类覆盖掉,只能保留一个。

## 这里采用基于TSNE的聚类方法。

pbmc <- RunTSNE(pbmc, dims = 1:10)

## 用DimPlot()函数绘制散点图,reduction = "tsne",指定绘制类型;如果不指定,默认先从搜索 umap,然后 tsne, 再然后 pca;也可以直接使用这3个函数PCAPlot()、TSNEPlot()、UMAPPlot(); cols,pt.size分别调整分组颜色和点的大小;

DimPlot(pbmc,reduction = "tsne",label = TRUE,pt.size = 1.5)

## 这里采用基于图论的聚类方法

pbmc<-RunUMAP(object=pbmc,dims=1:10)

DimPlot(object=pbmc,reduction="umap")

## 细胞周期归类

pbmc<- CellCycleScoring(object = pbmc, g2m.features = cc.genes$g2m.genes, s.features = cc.genes$s.genes)

head(x = [email protected])

DimPlot(pbmc,reduction = "tsne",label = TRUE,group.by="Phase",pt.size = 1.5)

## 存储结果

saveRDS(pbmc, file = "D:/pbmc_tutorial.rds")

save(pbmc,file="D:/res0.5.Robj")

## 寻找cluster 1的marker

cluster1.markers <- FindMarkers(pbmc, ident.1 = 1, min.pct = 0.25)

head(cluster1.markers, n = 5)

## 结果:      p_val             avg_logFC        pct.1       pct.2        p_val_adj

MT-CO1  0.000000e+00    -0.6977083      0.985       0.996       0.000000e+00

RPS27  2.182766e-282     0.3076454       1.000       0.999        3.480202e-278

MT-CO3 2.146399e-274    -0.4866429      0.995       0.997       3.422218e-270

DUSP1  2.080878e-247    -1.7621662       0.376       0.745       3.317752e-243

RPL34  8.647733e-244     0.3367755        1.000       0.997       1.378795e-239

##寻找每一cluster的marker

pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)

# A tibble: 24 x 7

# Groups:   cluster [12]

       p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene 

       <dbl>     <dbl><dbl><dbl>     <dbl><fct>   <chr>

 1 2.29e-123     0.636 0.344 0.097 3.65e-119 0       CD8B 

 2 7.62e-113     0.487 0.632 0.305 1.22e-108 0       LEF1 

 3 2.04e- 74     0.483 0.562 0.328 3.25e- 70 1       LEF1 

 4 1.39e- 61     0.462 0.598 0.39  2.22e- 57 1       ITM2A

 5 0.            2.69  0.972 0.483 0.        2       GNLY 

 6 0.            2.40  0.964 0.164 0.        2       GZMB 

 7 1.31e-121     0.768 0.913 0.671 2.09e-117 3       JUNB 

 8 2.06e- 94     0.946 0.426 0.155 3.28e- 90 3       RGS1 

 9 2.05e-255     1.57  0.586 0.09  3.27e-251 4       GZMK 

10 2.94e-140     1.57  0.69  0.253 4.68e-136 4       KLRB1

# ... with 14 more rows

## 存储marker

write.table(pbmc.markers,file="D:/allmarker.txt")

## 各种绘图

## 绘制Marker 基因的tsne图

FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"),cols = c("gray", "red"))

## 绘制Marker 基因的小提琴图

VlnPlot(pbmc, features = c("MS4A1", "CD79A"))

VlnPlot(pbmc, features = c("NKG7", "PF4"), slot = "counts", log = TRUE)

## 绘制分cluster的热图

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)

DoHeatmap(pbmc, features = top10$gene) + NoLegend()

剩下的便是寻找基因 marker 并对细胞类型进行注释(见下回分解)