怎么写高中数学论文

Python017

怎么写高中数学论文,第1张

高中关于概率论教学探究论文

摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观随机现象的理解与认识,并激发学生自主学习和主动探索的精神.

在数学的历史发展过程中出现了3 次重大的飞跃.第一次飞跃是从算数过渡到代数,第二次飞跃是常量数学到变量数学,第三次飞跃就是从确定数学到随机数学.现实世界的随机本质使得各个领域从确定性理论转向随机理论成为自然;而且随机数学的工具、结论与方法为解决确定性数学中的问题开辟了新的途径.因此可以说,随机数学必将成为未来主流数学中的亮点之一.概率论作为随机数学中最基础的部分,已经成为高校中很多专业的学生所必修的一门基础课.但是教学过程中存在的一个主要问题是:学生们往往已经习惯了确定数学的学习思维方式,认为概率中的基本概念抽象难以理解,思维受限难以展开.这些都使得学生对这门课望而却步,因此如何在概率论的教学过程中培养学生学习随机数学的思维方法就显得十分重要.本文拟介绍我们在该课程教学中的改革尝试,当作引玉之砖.

1 将数学史融入教学课堂在概率论教学过程当中,介绍相关的数学史可以帮助学生更好地认识到概率论不仅是“ 阳春白雪” ,而且还是一门应用背景很强的学科.比如说概率论中最重要的分布——正态分布,就是在18 世纪,为解决天文观测误差而提出的.在17、18 世纪,由于不完善的仪器以及观测人员缺乏经验等原因,天文观测误差是一个重要的问题,有许多科学家都进行过研究.1809年,正态分布概念是由德国的数学家和天文学家德莫弗(DeMoivre)于1733 年首次提出的,德国数学家高斯(Gauss)率先将正态分布应用于天文学研究,指出正态分布可以很好地“ 拟合” 误差分布,故正态分布又叫高斯分布.如今,正态分布是最重要的一种概率分布,也是应用最广泛的一种连续型分布.在1844 年法国征兵时,有许多符合应征年龄的人称自己的身高低于征兵的最低身高要求,因而可以免服兵役,这里面一定有人为了躲避兵役而说谎.果然,比利时数学家凯特勒(A. Quetlet,1796—1874)就是利用身高服从正态分布的法则,把应征人的身高的分布与一般男子的身高分布相比较,找出了法国2000 个为躲避征兵而假称低于最低身高要求的人[1].在大学阶段,我们不仅希望通过数学史在教学课堂中的呈现来引起学生学习概率论这门课程的兴趣,更应侧重让学生通过兴趣去深入挖掘数学史,感受随机数学的思想方法[2].我们知道概率论中的古典概型要求样本空间有限,而几何概型恰好可以消除这一条件,这两种概型学生理解起来都很容易.但是继而出现的概率公理化定义,学生们总认为抽象、不易接受.尤其是概率公理化定义里出现的σ 代数[3]

这一概念:设Ω 为样本空间,若Ω 的一些子集所组成的集合? 满足下列条件:(1)Ω∈? ;(2)若A∈ ? ,则A∈ ? ;(3)若∈ n A ? ,n =1, 2,??,则∈∞=nnA ∪1? ,则我们称 ? 为Ω 的一个σ 代数.为了使学生更好的理解这一概念,我们可以引入几何概型的一点历史来介绍为什么要建立概率的公理化定义,为什么需要σ 代数.几何概型是19 世纪末新发展起来的一种概率的计算方法,是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.1899 年,法国学者贝特朗提出了所谓“ 贝特朗悖论” [3],矛头直指几何概率概念本身.这个悖论是:给定一个半径为1 的圆,随机取它的一条弦,问:

弦长不小于3 的概率为多大?对于这个问题,如果我们假定端点在圆周上均匀分布,所求概率等于1/3;若假定弦的中点在直径上均匀分布,所求概率为1/2;又若假定弦的中点在圆内均匀分布,则所求概率又等于1/4.同一个问题竟然会有3 种不同的答案,原因在于取弦时采用了不同的等可能性假定!这3 种答案针对的是3 种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此在使用“ 随机” 、“ 等可能”、“ 均匀分布” 等术语时,应明确指明其含义,而这又因试验而异.也就是说我们在假定端点在圆周上均匀分布时,就不能考虑弦的中点在直径上均匀分布或弦的中点在圆内均匀分布所对应的事件.换句话讲,我们在假定端点在圆周上均匀分布时,只把端点在圆周上均匀分布所对应的元素看成为事件.现在再来理解σ -代数的概念:对同一个样本空间Ω ,?1 ={?, Ω}为它的一个σ 代数;设A为Ω 的一子集,则 ?2 ={?, A, A, Ω}也为Ω 的一个σ 代数;设B 为Ω 中不同于A的另一子集,则?3 = {?, A,B, A,B, AB, AB,BA,AB,Ω}也为Ω 的一个σ 代数;Ω 的所有子集所组成的集合同样能构成Ω 的一个σ 代数.当我们考虑?2 时,就只把元素?2 的元素? , A , A , Ω 当作事件,而B 或AB 就不在考虑范围之内.由此σ 代数的定义就较易理解了.2 广泛运用案例教学法案例与一般例题不同,它有产生问题的实际背景,并能够为学生所理解.案例教学法是将案例作为一种教学工具,把学生引导到实际问题中去,通过分析和讨论,提出解决问题的基本方法和途径的一种教学方法.我们可以从直观性、趣味性和易于理解的角度把概率论基础知识加以介绍.我们在讲条件概率一节时可以先介绍一个有趣的案例——“ 玛丽莲问题” :十多年前,美国的“ 玛利亚幸运抢答”

电台公布了这样一道题:在三扇门的背后(比如说1 号、2号及3 号)藏了两只羊与一辆小汽车,如果你猜对了藏汽车的门,则汽车就是你的.现在先让你选择,比方说你选择了1 号门,然后主持人打开了剩余两扇门中的一个,让你看清楚这扇门背后是只羊,接着问你是否应该重新选择,以增大猜对汽车的概率?

由于这个问题与当前电视上一些娱乐竞猜节目很相似,学生们就很积极地参与到这个问题的讨论中来.讨论的结果是这个问题的答案与主持人是否知道所有门背后的东西有关,这样就可以很自然的引出条件概率来.在这样热烈的气氛里学习新的概念,一方面使得学生的积极性高涨,另一方面让学生意识到所学的概率论知识与我们的日常生活是息息相关的,可以帮助我们解决很多实际的问题.因此在介绍概率论基础知识时,引进有关经典的案例会取得很好的效果.例如分赌本问题、库存与收益问题、隐私问题的调查、概率与密码问题、17 世纪中美洲巫术问题、调查敏感问题、血液检验问题、1992 年美国佛蒙特州州务卿竞选的概率决策问题,以及当前流行的福利彩票中奖问题,等等[4].

概率论不仅可以为上述问题提供解决方法,还可以对一些随机现象做出理论上的解释,正因为这样,概率论就成为我们认识客观世界的有效工具.比如说我们知道某个特定的人要成为伟人,可能性是极小的.之所以如此,一个原因是由于某人的诞生是一系列随机事件的复合:父母、祖父母、外祖父母……的结合、异性的两个生殖细胞的相遇,而这两个细胞又必须含有某些产生天才的因素.另一个原因是婴儿出生以后,各种偶然遭遇在整体上必须有利于他的成功,他所处的时代、他所受的教育、他的各项活动、他所接触的人与事以及物,都须为他提供很好的机会.虽然如此,各时代仍然伟人辈出.一个人成功的概率虽然极小,但是几十亿人中总有佼佼者,这就是所谓的“” 的一种含义.如何用概率论的知识解释说明这个问题呢?设某试验中事件A出现的概率为ε ,0 <ε <1,不管ε 如何小,如果把这试验不断独立重复做任意多次,那么A 迟早会出现1次,从而也必然会出现任意多次.这是因为,第一次试验A不出现的概率为(1?ε )n ,前n 次A 都不出现的概率为1? (1?ε )n,当n 趋于无穷大时,此概率趋于1,这表示A迟早出现1 次的概率为1.出现A 以后,把下次试验当作第一次,重复上述推理,可见A 必然再出现,如此继续,可知A必然出现任意多次.因此,一个人成为伟人的概率固然非常小,但是千百万人中至少有一个伟人就几乎是必然的了[5].3 积极开展随机试验随机试验是指具有下面3 个特点的试验:

(1)可以在相同的条件下重复进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在讲授随机试验的定义时,我们往往把上面3 个特点一一罗列以后,再举几个简单的例子说明一下就结束了,但是在看过一期国外的科普短片以后,我们很受启发.节目内容是想验证一下:当一面涂有黄油,一面什么都没有涂的面包从桌上掉下去的时候,到底会哪一面朝上?令我们没有想到的是,为了让试验结果更具说服力,实验人员专门制作了给面包涂黄油的机器,以及面包投掷机,然后才开始做试验.且不论这个问题的结论是什么,我们观察到的是他们为了保证随机试验是在相同的条件下重复进行的,相当严谨地进行了试验设计.我们把此科普短片引入到课堂教学中,结合实例进行分析,并提出随机试验的3 个特点,学生接受起来十分自然,整个教学过程也变得轻松愉快.因此,我们在教学中可以利用简单的工具进行实验操作,尽可能使理论知识直观化.比如全概率公式的应用演示、几何概率的图示、随机变量函数的分布、数学期望的统计意义、二维正态分布、高尔顿钉板实验等,把抽象理论以直观的形式给出,加深学生对理论的理解.但是我们不可能在有限的课堂时间内去实现每一个随机试验,因此为了有效地刺激学生的形象思维,我们采用了多媒体辅助理论课教学的手段,通过计算机图形显示、动画模拟、数值计算及文字说明等,建立一个图文并茂、声像结合、数形结合的生动直观的教学环境,从而拓宽学生的思路,有利于概率论基本理论的掌握.与此同时,让学生在接受理论知识的过程中还能够体会到现代化教学的魅力,达到了传统教学无法实现的教学效果[6].4 引导学生主动探索传统的教学方式往往是教师在课堂上满堂灌,方法单一,只重视学生知识的积累.教师是教学的主体,侧重于教的过程,而忽视了教学是教与学互动的过程.相比较而言,现代教学方法更侧重于挖掘学生的学习潜能,以最大限度地发挥及发展学生的聪明才智为追求目标.例如,在给出条件概率的定义以后,我们知道当P(A) >0时,P(B | A)未必等于P(B).但是一旦P(B | A) =P(B),也就说明事件A的发生不影响事件B的发生.同样当P(B) >0时,若P(A| B) = P(A),就称事件B的发生不影响事件A 的发生.因此若P(A) >0 , P(B) >0 ,且P(B | A) = P(B)与P(A| B) = P(A)两个等式都成立,就意味着这两个事件的发生与否彼此之间没有影响.我们可以让学生主动思考是否能够如下定义两个事件的独立性:

定义1:设A,B 是两个随机事件,若P(A) >0 ,P(B) >0,我们有P(B | A) = P(B)且P(A| B) = P(A),则称事件A 与事件B 相互独立.接下来,我们可以继续引导学生仔细考察定义1 中的条件P(A) >0 与P(B) >0 是否为本质要求?事实上,如果P(A) >0,P(B) >0,我们可以得到:

P(B | A) = P(B) ? P(AB) = P(A)P(B) ? P(A| B) = P(A).但是当P(A) = 0,P(B) = 0时会是什么情况呢?由事件间的关系及概率的性质,我们知道AB ? A, AB ? B,因此P(AB) = 0 = P(A)P(B),等式仍然成立.所以我们可以舍去定义1中的条件P(A) >0,P(B) >0,即如下定义事件的独立性:

定义2 : 设A , B 为两随机事件, 如果等式P(AB) = P(A)P(B)成立,则称A,B为相互独立的事件,又称A,B 相互独立.很显然,定义2 比定义1 更加简洁.在这个定义的寻找过程中,我们不仅能够鼓励学生积极思考,而且可以很好地培养和锻炼学生提出问题、分析问题以及解决问题的能力,从而体会数学思想,感受数学的美.5 结 束 语通过实践我们发现,将数学史引入课堂既能让学生深入了解随机数学的形成与发展过程,又切实感受到随机数学的思想方法;把案例应用到教学当中以及在课堂上开展随机试验可以将概率论基础知识直观化,增加课程的趣味性,易于学生的理解与掌握;引导学生主动探索可以强化教与学的互动过程,激发学生用数学思想来解决概率论中遇到的问题.总之,在概率论的教学中,应当注重培养学生建立学习随机数学的思维方法,通过教学手段的多样化以及丰富的教学内容加深学生对客观随机现象的理解与认识.另外,要以人才培养为本,实现以教师为主导,学生为主体的主客体结合的教学思想,将培养学生实践能力、创新意识与创新能力的思想落到实处,以期达到学生受益最大化的目标,为学生将来从事经济、金融、管理、教育、心理、通信等学科的研究打下良好的基础.

[参 考 文 献]

[1] C·R·劳.统计与真理[M].北京:科学出版社,2004.

[2] 朱哲,宋乃庆.数学史融入数学课程[J].数学教育学报,2008,17(4):11–14.

[3] 王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007.

[4] 张奠宙.大千世界的随机现象[M].南宁:广西教育出版社,1999.

[5] 王梓坤.随机过程与今日数学[M].北京:北京师范大学出版社,2006.

[6] 邓华玲,傅丽芳,任永泰.概率论与数理统计实验课的探讨与实践[J].大学数学,2008,24(2):11–14.

建立数学创造性意识的学习氛围论文

论文关键词:创造性思维培养协同培养 论文摘要:本文论述了创造性思维研究的现状,简单梳理了创造性思维研究的几种观点,并鉴于实践中对于创造性思维研究的成果的应用,列举了五种较为流传的创造……

剖析高中平面向量授课方式研究论文

【摘要】本文通过对高中第五章平面向量的研究,从运算的角度,教学内容、要求、重难点,本章的特点三个方面进行了总结,得出了五个方面的教学体会。 【关键词】平面向量;数形结合;向量法;教学体会……

培养学生数学时刻使用意识研究论文

[摘要]培养数学应用意识,促进知识内化,达到发展学生智慧的目的,是当前小学数学教学中人们关注的一个热点问题。本文从培养学生数学应用意识的理论依据及探索实践这两个方面对如何发展学生智慧问题进行探讨。……

高中关于概率论教学探究论文

摘要:将数学史引入课堂、在教学中广泛应用案例、积极开展随机试验以及引导学生主动探索等,有助于改进概率论教学方法,解决教学实践问题,提高教学质量.教学手段的多样化以及丰富的教学内容可以加深学生对客观……

光子盒研究院出品

自从去年10月23日,谷歌“利用可编程超导处理器实现量子霸权”被正式刊文介绍之后,世界都认识到了一个新名词:“量子霸权”。谷歌开发出的一款54量子比特的超导量子芯片“Sycamore”,对随机量子线路采样100万次只需200秒,而目前最强的传统超级计算机Summit要得到类似的结果需要长达1万年(IBM已证明只需3天)。

再谈量子霸权

量子霸权(Quantum Supremacy),也叫“量子优势”或“量子至上”,是指量子计算机具备超越经典计算机的计算能力。量子霸权的概念由美国理论物理学家 John Preskill于2011年提出。 业界普遍认为,实现量子霸权是量子计算从理论实验走向通用的开端。

一般认为, 如果量子计算机在“某些特定问题”上的计算能力超过了传统经典计算机,那么就被认为实现了“量子霸权”。 专家估计,如果量子计算机能操控超过49个量子比特,其在某个特定问题上的计算速度就有可能超过包含超级计算机在内的任何传统计算机。

为什么谷歌那么在意自己获得了“量子霸权”?人类实现“量子霸权”究竟有多大意义?

量子霸权实验可以类比贝尔实验。贝尔实验已经无漏洞地反驳了定域隐变量模型,而量子霸权实验将驳倒“拓展的丘奇—图灵论题”,其表述为:经典计算机可以在多项式时间内有效模拟任何物理过程。“量子霸权”将提供一个令人信服的证据证明经典计算模型无法模拟纠缠,更无法获得量子计算的计算能力。

“量子霸权”对于完善基础量子理论也至关重要,因为到目前为止量子力学是唯一改变计算模型的物理理论。另一方面,实现“量子霸权”将极大增强我们对实现大规模可扩展的通用量子计算机的信心。

但显然,随着量子计算的研究成果呈现显著增长,整个国际 社会 和舆论对于量子计算带来了过分的炒作,MIT的理论物理学家Seth Lloyd谈到:“整个量子计算领域现在正走向疯狂。” 量子霸权这一概念加剧了媒体与 科技 公司对量子技术的炒作,其提出者Preskill也因此开始反思这个概念是否合适。

近年来,谷歌、IBM等公司纷纷对外宣称成功开发出了大数量(50以上)量子比特的量子计算原型机。然而,实现量子计算的关键参数不仅仅是量子比特的数目,还有系统的保真度。 随着量子比特数目的增加,量子计算的保真度也会急剧的下降,这将导致错误率很迅速上升。

IBM Research部门负责人Dario Gil对外表示:“量子比特数量增加只是一个方面,控制的量子比特越多,量子比特之间纠缠的交互作用就会越复杂。如果人类拥有了更多的量子比特,但它们相互联系时会有很高的错误率,那么它们不见得比错误率较低的只有5个量子比特的机器强大。”

量子霸权的实现路径

量子霸权概念提出后,各国科学家们提出了很多种实验和理论方案。MIT的Aram Harrow等人在2017年列出五条实现量子霸权的条件:

1、首先这个计算任务必须定义明确。

2、对应该计算任务,要有一个合理的量子算法。

3、对于经典计算机可以满足的时间和空间。

4、计算复杂性理论基础假设(经典无法模拟量子的假设)成立。

5、计算结果可以得到验证。

这五个条件为量子霸权的实现指明了方向。依据这五条标准,目前业内主流的几个理论方案如下:

1、Shor算法是量子计算机最具应用前景的算法,而且其结果很容易被证实,理应是实现“量子霸权”的一个最优选项。但是,到目前为止最好的估计告诉我们,如果想要分解一个2048位的大整数,需要数千个纠缠的量子比特,对于目前的技术来说,这很难在一个较短的时间内实现。

2、“玻色采样”方案是有较强的计算复杂性理论支撑,但是物理实现并不明确;玻色采样的理论方案最早由MIT的理论计算机科学家Scott Aaronson等人在2011年提出。玻色采样是指对从一个复杂干涉网络输出的玻色子的态空间进行采样,类似于经典世界的高尔顿板。玻色采样所需的物理资源仅仅是不可识别的玻色子(光子),线性演化以及测量。其中玻色子类似于高尔顿钉板中的小球,线性演化类似于小球经过钉板的 过程。但是以光量子计算方案为基础的玻色采样面临光子制备和探测效率低的实验技术难题。不过,最新实验研究表明玻色采样即将逼近“量子霸权”,中国 科技 大学潘建伟团队利用自主研发的高品质单光子源,实现了20光子输入60×60模式干涉线路的玻色采样量子计算,美国物理学会Physics网站以“玻色采样量子计算逼近里程碑”为题对该成果做了精选报道。

3、谷歌主导的随机线路采样方案,是短期内物理实现较容易,但是理论证明并不明确。该方案得益于高品质超导量子比特的快速发展。随机线路采样是对随机量子线路的输出分布进行采样。谷歌去年利用Sycamore的53个量子比特的可编程超导量子处理器实现了“量子霸权”。不过这个结果很快遭到IBM研究人员的质疑,并且很快在预印网站arxiv上刊出了他们的成果,文章中指出,利用他们的方法,经典超级计算机可以在2.5天内以更高的保真度完成相同的计算任务。那么按照这个结果,我们距离“量子霸权”还很远。

量子霸权有点玄

实际上,IBM并不提倡使用“量子霸权”这一概念,他们认为“量子霸权”更像是谷歌公司炒作自身的工具。 因此,更可靠的说法应该是,未来的很长时间内,经典计算机和量子计算机将会共存,各自负责不同的计算领域,今后的计算机极有可能同时包含经典和量子两部分,各自处理自身优势的计算任务。

目前距离实用的量子计算机还有很长的路要走,一方面,实验量子计算还存在很多不可逾越的技术障碍,目前的实验系统,普遍面临纠缠量子比特数少、相干时间短、出错率高等诸多挑战;另一方面,量子计算相对于经典计算机的优势还有待进一步确认。

Uhlig表示,量子计算虽然被人类给予了厚望,但是其能否取代经典计算机,现在下结论还为时过早。目前来讲,经典无法有效模拟量子系统这一描述仅仅是学界的共识,并没有完全证明。

量子计算的计算模型和思路同样可以应用到经典计算中,经典计算的计算能力还有待进一步开发,研究者们对于经典计算仍然充满期待。虽然谷歌宣布实现了“量子霸权”,但是这样的“量子霸权”可能只是暂时的,不排除会有加速经典算法的出现。

来自美国得克萨斯大学奥斯汀分校的18岁华裔少女Ewin Tang, 在其本科毕业设计中提出了一个可以媲美量子算法的经典算法。 从2017年秋天开始,她在Scott Aaronson指导下,试图证明经典算法无法提供量子算法这样的加速。

但是经过几个月的努力,Ewin并没有找到相关证据,相反,她开始考虑是否确实存在这样的经典算法。最终,Ewin发现KP算法利用了量子相位估计,而对于经典算法可以不需要相位估计,通过用户偏好矩阵的一个微小子矩阵的随机采样就可以实现类似的加速效应。

随后Ewin参加了在伯克利举行的一个量子计算会议,将自己的成果向在座专家(其中包括KP算法的提出者)进行了汇报,经过近四个小时的讨论,与会专家一致认为Ewin的经典算法是正确的。

通用量子计算机还有多远?

2019年9月,新兴量子技术国际大会的白皮书将面向规模化、实用化方向演进的量子计算的研究路线概括为:

第一阶段是实现量子霸权,量子计算模拟机具备针对特定问题超越传统超级计算机的计算能力,其中第一阶段又可以分出两个阶段,分别为量子霸权阶段和NISQ(含噪声的中型量子)阶段,NISQ时代是量子霸权的第二阶段,具备50-100个量子比特的量子计算机将研发出来,可以执行超越当前经典计算机能力范围的任务,使用含噪声的中型量子技术的设备将成为 探索 多体量子物理学的有用工具;

第二阶段是实现具有应用价值的专用量子计算模拟系统,并在组合优化、机器学习、量子化学等方面发挥巨大作用。面向具体领域的专用型量子计算机有望率先成熟并获得应用落地,实现几百个量子比特的操控,研制专用的量子模拟机用于高温超导机制、特殊材料设计等目前经典计算机无法完成的工作;

第三阶段是实现可编程的通用量子计算机,并在经典密码破解、大数据搜索、人工智能等方面发挥重要作用。通用量子计算机通过把物理量子比特编码成逻辑量子比特,实现可编程通用的量子急速三级,最终在大数据处理、人工智能、密码破译等领域产生颠覆性影响。

从上可见,量子计算机的发展过程还很漫长,距离真正可商业化还有很长的距离,量子计算商用化目前面临的挑战主要有:

1、量子位是否可以实现规模化扩展,这在理论研究和工程建设两个层面都是重要挑战,量子位规模化扩展势在 行,现在虽然只是几十个量子位,未来要解决几十万甚至上百万量子位的问题,量子计算商用化的成功与否的决定性前提;

2、学界和工业界目前都在开发各种固态量子系处理器,技术路线无统一定论,商用层面的通用量子计算技术的统一标准更无从谈起;要谈量子计算的商业应用,必须要配备严格的环境控制,例如需要构建严格而稳定的低温环境,才能保障大量量子位稳定运行;软件堆栈的演化面临巨大挑战,既需要能够将算法投射到问题本身,又最终可以让高稳定性和可靠性的量子系统在真实应用场景中解决问题。

量子计算机从理论上来说,完全可以实现。但要真正把他做出来,在实现上有很多技术和工程的难题,比如,量子相干性的保持、量子比特的操控和集成之间的平衡问题、量子测控系统和量子芯片的互联和自适应问题、量子比特的纠错与容错,以及更多量子算法和量子软件的开发问题等。

这些问题很多都是基础工艺和工程问题,还有材料和基础化学问题,短时间难以克服,需要一点点推进。

-End-

1930年秋,第六届索尔维会议在布鲁塞尔召开。早有准备的爱因斯坦在会上向玻尔提出了他的著名的思想实验——“光子盒”,公众号名称正源于此。

高尔顿钉板。

高尔顿钉板,其设计者为英国生物统计学家高尔顿,指的是每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间。

从入口处放进一个直径略小于两颗钉子之间的距离的小圆玻璃球,当小圆球向下降落过程中,碰到钉子后皆以1/2的概率向左或向右滚下,于是又碰到下一层钉子。如此继续下去,直到滚到底板的一个格子内为止。

把许许多多同样大小的小球不断从入口处放下,只要球的数目相当大,它们在底板将堆成近似于正态的密度函数图形(即:中间高,两头低,呈左右对称的古钟型),其中n为钉子的层数。

这是英国生物统计学家高尔顿设计的用来研究随机现象的模型,称为高尔顿钉板(或高尔顿板)。