系统发育比较分析—R

Python014

系统发育比较分析—R,第1张

系统发育树 是研究物种进化历史必不可少的信息,我们可以利用它得到一些重要历史线索,如:

首先,安装系统发育分析所需的软件包

其实,此处的树文件就是一个字符串列表(列表还可以是数字型)。

接下来,主要是看一下这些对象是如何存储在变量中的:

我们可以看到,树中所有分类单元之间的关系信息都包含在每条边的起始节点和结束节点中,共享共同起始节点编号的边是直接共同祖先的后代。

我们还可以测试树文件,编辑以及去除一些末端枝:

布朗模型:

(1). 连续型性状进化的一个模型;

(2). 性状随着时间不断变化;

(3). 经过一段时间后,预期的状态将服从正态分布

(1). 有时称为维纳过程;

(2). 连续时间随机过程;

(3). 描述连续型性状的“随机演化”;

(1). BM可以用来描述由大量独立的弱力组合而产生的运动;

(2). 加入许多小的自变量后,无论原始分布如何(中心极限定理),都会产生正态分布;

演化过程近似布朗运动

Ⅰ. 遗传漂变

Ⅱ. 随机改变

Ⅲ. 相对于考虑的时间间隔弱的自然选择

Ⅳ. 随时间随机变化的自然选择

系统发育独立差(Phylogenetic Independent Contrast, PIC)是去除性状分析中物种系统发育关系的一种方法,是美国进化生物学家 J. Felsenstein于1985年提出的。 参考链接

当时,有动物学家检验了若干哺乳动物脑容量和体重的相关性。然而,所用统计方法都假设各个种的性状是相互独立的,采集自同一个正态分布的总体。由于不同种之间存在系统发育上的联系,因此不能直接套用常规统计模型,所以所得结果也就不可信了。在Felsenstein之前,一些学者已经意识到这个问题,但是都没能给出理想的解决方案。

Felsenstain认真思考了这个问题,并且认为:研究多个不同性状的相关性时,必须考虑系统发育关系。他提出:假设物种性状的进化服从布朗运动,那么用系统发育关系上最近的分类单元性状的差值,再经过枝长加权,就可以得到一组新的数据。这组新的数据去掉了进化信息的干扰,因此可以用常规统计方法检验。上述方法新获得的数据就称为系统发育独立差 (The Phylogenetic Independent Contrast, PIC)。

举例来说,如果要研究哺乳动物脑容量和体重的关系,就要先获得这些种之间的进化关系,也就是经过分子钟校订的进化树。然后再计算脑容量的PIC和体重的PIC,再用脑容量的PIC和体重的PIC建立线性模型,进行相关性检验。

现在让我们来模拟一下布朗运动在树枝上的移动。坚持离散时间,我们首先需要一个离散时间的系统演化,我们可以用pbtree在phytools中进行模拟。

现在,为了在树的所有分支上进行模拟,我们只需要分别在每个分支上模拟,然后根据每个分支的父分支的结束状态“移动”每个子分支。我们可以这样做,记住,因为布朗演化的结果在每个时间步骤是独立于所有其他的时间步骤。

在本教程中,我们将学习应用Felsenstein的独立对比方法来估计性状之间的进化相关性。Felsenstein发现一个以前已经认识到的问题,但这一问题没有得到充分的认识:即从统计分析的角度来看,物种数据不能被视为独立的数据点。

为了学习对比方法,我们首先需要学习一些用r语言拟合线性模型的基础知识。

这个模拟非常简单地表明,当满足标准统计假设时,我们的参数估计是无偏的,并且第一类误差在标称水平或附近。

系统发育数据的困难在于,对于y的观测不再是独立的和相同的分布:

从这个例子中我们可以看出,对于系统发育来说,诱发I类型的错误并不难。这是因为紧密相关的分类群具有高度相似的表型。换句话说,它们并不是关于树上x和y的演化过程的独立数据点.

PGLS还可以使用多个预测变量:

另一种检测系统发育信号的方法是Pagel的lambda。Lambda是一种相对于内部分支延伸尖端分支的树变换,使树越来越像一个完整的多段切除法。如果我们估计的λ=0,则推断这些性状没有系统发育信号。λ=1对应于布朗运动模型,0<lambda<1介于两者之间。

推断祖先状态一直是系统发育比较生物学中一个重要的目标,本教程主要介绍如何在BM以及OU模型下重构祖先性状。第一个例子就是蜥蜴祖先体型大小的状态重建,这是一个连续型变量。

现在我们可以估计祖先的状态,还将计算方差&每个节点的95%置信区间:

randn('state',100) % 产生随机态

T = 1N = 500dt = T/N

dW = zeros(1,N)% 存放位置

W = zeros(1,N) % 为了加快运算速度

dW(1) = sqrt(dt)*randn % 循环前的初始化

W(1) = dW(1) % W(0) = 0 不允许,所以首先置值

for j = 2:N

dW(j) = sqrt(dt)*randn % 产生序列

W(j) = W(j-1) + dW(j)

end

plot([0:dt:T],[0,W],'r-')% 画图。哦耶。

xlabel('t','FontSize',16)

ylabel('W(t)','FontSize',16,'Rotation',0)

--

title: R语言中dnorm, pnorm, qnorm与rnorm以及随机数

date: 2018-09-07 12:02:00

type: "tags"

tags:

在R语言中,与正态分布(或者说其它分布)有关的函数有四个,分别为dnorm,pnorm,qnorm和rnorm,其中,dnorm表示密度函数,pnorm表示分布函数,qnorm表示分位数函数,rnorm表示生成随机数的函数。在R中与之类似的函数还有很多,具体的可以通过 help(Distributions) 命令去查看,对于分位数或百分位数的一些介绍可以看这篇笔记 《分位数及其应用》 ,关于正态分布的知识可以看这篇笔记 《正态分布笔记》 。

现在这篇笔记就介绍一下这些函数的区别。

R提供了多种随机数生成器(random number generators, RNG),默认采用的是Mersenne twister方法产生的随机数,该方法是由Makoto Matsumoto和Takuji Nishimura于1997年提出来的,其循环周期是 。R里面还提供了了Wichmann-Hill、Marsaglia-Multicarry、Super-Duper、Knuth-TAOCP-2002、Knuth-TAOCP和L'Ecuyer-CMRG等几种随机数生成方法,可以通过 RNGkind() 函数进行更改,例如,如果要改为WIchmann-Hill方法,就使用如下语句:

在R中使用随机数函数,例如 rnorm() 函数来生成的随机数是不一样的,有时我们在做模拟时,为了比较不同的方法,就需要生成的随机数都一样,即重复生成相同的随机数,此时就可以使用 set.seed() 来设置随机数种子,其参数为整数,如下所示

dnorm 中的 d 表示 density , norm 表示正态贫,这个函数是正态分布的 概率密度(probability density)函数 。

正态分布的公式如下所示:

给定x,μ和σ后, dnorm() 这个函数返回的就是会返回上面的这个公式的值,这个值就是Z-score,如果是标准正态分布,那么上述的公式就变成了这个样子,如下所示:

现在看一个案例,如下所示:

dnorm(0,mean=0,sd=1) 由于是标准正态分布函数的概率密度,这个命令其实可以直接写为 dnorm(0) 即可,如下所示:

再看一个非标准正态分布的案例,如下所示:

虽然在 dnorm() 中,x是一个概率密度函数(PDF,Probability Density Function)的独立变量,但它也能看作是一组经过Z转换后的一组变量,现在我们看一下使用 dnorm 来绘制一个正态分布的概率密度函数曲线,如下所示:

现在使用 dnorm() 函数计算一下Z_scores的概率密度,如下所示:

现在绘图,如下所示:

从上面的结果可以看出,在每个Z-score处, dnorm 可以绘制出这个Z-score对应的正态分布的pdf的高度。

pnorm 函数中的 p 表示Probability,它的功能是,在正态分布的PDF曲线上,返回从负无穷到 q 的积分,其中这个 q 指的是一个Z-score。现在我们大概就可以猜测出 pnorm(0) 的值是0.5,因为在标准正态分布曲线上,当Z-score等于0时,这个点正好在标准正态分布曲线的正中间,那么从负无穷到0之间的曲线面积就是整个标准正态分布曲线下面积的一半,如下所示:

pnorm 函数还能使用 lower.tail 参数,如果 lower.tail 设置为 FALSE ,那么 pnorm() 函数返回的积分就是从 q 到正无穷区间的PDF下的曲线面积,因此我们就知道了, pnorm(q) 与 1-pnorm(q,lower.tail=FALSE) 的结果是一样的,如下所示:

在计算机出现之前的时代里,统计学家们使用正态分布进行统计时,通常是要查正态分布表的,但是,在计算机时代,通常都不使用正态分布表了,在R中, pnorm() 这个函数完全可以取代正态分布表了,现在我们使用一个Z-scores的向量来计算一下相应的累积概率,如下所示:

以上就是标准正态分布的 累积分布函数(CDF,Cumulative Distribution Function) 曲线。

简单来说, qnorm 是正态分布 累积分布函数(CDF,Cumulative Distribution Function) 的反函数,也就是说它可以视为 pnorm 的反函数,这里的 q 指的是quantile,即分位数。

使用 qnorm 这个函数可以回答这个问题:正态分布中的第p个分位数的Z-score是多少?

现在我们来计算一下,在正态分布分布中,第50百分位数的Z-score是多少,如下所示:

再来看一个案例:在正态分布中,第96个百分位的Z-score是多少,如下所示:

再来看一个案例:在正态分布中,第99个百分位的Z-score是多少,如下所示:

再来看一下 pnorm() 这个函数,如下所示:

从上面我们可以看到, pnorm 这个函数的功能是,我们知道某个Z-score是多少,它位于哪个分位数上。

接着我们进一步举例来说明一下 qnorm 和 pnorm 的具体功能,如下所示:

现在进行绘图,如下所示:

rnomr() 函数的功能用于生成一组符合正态分布的随机数,在学习各种统计学方法时, rnorm 这个函数应该是最常用的,它的参数有 n , mean , sd ,其中n表示生成的随机数,mean与sd分别表示正态分布的均值与标准差,现在举个例子,如下所示:

现在我们绘制一下上面的几个向量的直方图,看一下它们的均值是否在70附近,如下所示:

在R语言中,生成不同分布的各种类型的函数都是以d,p,q,r开头的,使用原理跟上面的正态分布都一样。

sample() 函数是一个用于生成随机数的重要的核心函数,如果仅传递一个数值n给它,就会返回一个从1到n的自然数的排列,如果传递是 n:m 就是生成从n到m的随机数,如是是 7,5 ,则会生成5个小于7的随机数,如下所示:

从上面的结果可以看出来,这些数字都是不同的,也就是说,sample函数默认情况下是不重复抽样,每个值只出现一次,如果允许有重复抽样,需要添加参数 replace = TRUE ,如下所示:

sample函数通常会从某些向量中随机挑一些参数,如下所示:

也可以挑日期,如下所示:

上述分布函数前面加上r,p、q、d就可以表示相应的目的: