c语言中,有虚函数吗?

Python018

c语言中,有虚函数吗?,第1张

有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节。类和结构体的对齐方式相同,有两条规则

1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。

2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行

下面是我收集的关于内存对齐的一篇很好的文章:

在最近的项目中,我们涉及到了“内存对齐”技术。对于大部分程序员来说,“内存对齐”对他们来说都应该是“透明的”。“内存对齐”应该是编译器的 “管辖范围”。编译器为程序中的每个“数据单元”安排在适当的位置上。但是C语言的一个特点就是太灵活,太强大,它允许你干预“内存对齐”。如果你想了解更加底层的秘密,“内存对齐”对你就不应该再透明了。

一、内存对齐的原因

大部分的参考资料都是如是说的:

1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

二、对齐规则

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

规则:

1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。

2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。

3、结合1、2颗推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。

三、试验

我们通过一系列例子的详细说明来证明这个规则吧!

我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。

我们将用典型的struct对齐来说明。首先我们定义一个struct:

#pragma pack(n) /* n = 1, 2, 4, 8, 16 */

struct test_t {

int a

char b

short c

char d

}

#pragma pack(n)

首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:

sizeof(char) = 1

sizeof(short) = 2

sizeof(int) = 4

我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。

1、1字节对齐(#pragma pack(1))

输出结果:sizeof(struct test_t) = 8 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(1)

struct test_t {

int a /* 长度4 <1 按1对齐;起始offset=0 0%1=0;存放位置区间[0,3] */

char b /* 长度1 = 1 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */

short c/* 长度2 >1 按1对齐;起始offset=5 5%1=0;存放位置区间[5,6] */

char d /* 长度1 = 1 按1对齐;起始offset=7 7%1=0;存放位置区间[7] */

}

#pragma pack()

成员总大小=8

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 1) = 1

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 8 /* 8%1=0 */ [注1]

2、2字节对齐(#pragma pack(2))

输出结果:sizeof(struct test_t) = 10 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(2)

struct test_t {

int a /* 长度4 >2 按2对齐;起始offset=0 0%2=0;存放位置区间[0,3] */

char b /* 长度1 <2 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */

short c/* 长度2 = 2 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */

char d /* 长度1 <2 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */

}

#pragma pack()

成员总大小=9

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 2) = 2

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 10 /* 10%2=0 */

3、4字节对齐(#pragma pack(4))

输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(4)

struct test_t {

int a /* 长度4 = 4 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */

char b /* 长度1 <4 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */

short c/* 长度2 <4 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */

char d /* 长度1 <4 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */

}

#pragma pack()

成员总大小=9

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 4) = 4

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

4、8字节对齐(#pragma pack(8))

输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(8)

struct test_t {

int a /* 长度4 <8 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */

char b /* 长度1 <8 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */

short c/* 长度2 <8 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */

char d /* 长度1 <8 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */

}

#pragma pack()

成员总大小=9

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 8) = 4

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

5、16字节对齐(#pragma pack(16))

输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]

分析过程:

1) 成员数据对齐

#pragma pack(16)

struct test_t {

int a /* 长度4 <16 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */

char b /* 长度1 <16 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */

short c/* 长度2 <16 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */

char d /* 长度1 <16 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */

}

#pragma pack()

成员总大小=9

2) 整体对齐

整体对齐系数 = min((max(int,short,char), 16) = 4

整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

四、结论

8字节和16字节对齐试验证明了“规则”的第3点:“当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果”。另外内存对齐是个很复杂的东西,上面所说的在有些时候也可能不正确。呵呵^_^

[注1]

什么是“圆整”?

举例说明:如上面的8字节对齐中的“整体对齐”,整体大小=9 按 4 圆整 = 12

圆整的过程:从9开始每次加一,看是否能被4整除,这里9,10,11均不能被4整除,到12时可以,则圆整结束。

可以通过以下方法实现面向对象:

1、封装

封装就是把数据和方法打包到一个类里面。其实C语言编程者应该都已经接触过了,C 标准库 中的 fopen(), fclose(), fread(), fwrite()等函数的操作对象就是 FILE。

数据内容就是 FILE,数据的读写操作就是 fread()、fwrite(),fopen() 类比于构造函数,fclose() 就是析构函数。

2、继承

继承就是基于现有的一个类去定义一个新类,这样有助于重用代码,更好的组织代码。在 C 语言里面,去实现单继承也非常简单,只要把基类放到继承类的第一个数据成员的位置就行了。

例如,我们现在要创建一个 Rectangle 类,我们只要继承 Shape 类已经存在的属性和操作,再添加不同于 Shape 的属性和操作到 Rectangle 中。

3、多态 C++

语言实现多态就是使用虚函数。在 C 语言里面,也可以实现多态。 现在,我们又要增加一个圆形,并且在 Shape 要扩展功能,我们要增加 area() 和 draw() 函数。

但是 Shape 相当于抽象类,不知道怎么去计算自己的面积,更不知道怎么去画出来自己。而且,矩形和圆形的面积计算方式和几何图像也是不一样的。

4、虚表和虚指针

虚表(Virtual Table)是这个类所有虚函数的函数指针的集合。

虚指针(Virtual Pointer)是一个指向虚表的指针。这个虚指针必须存在于每个对象实例中,会被所有子类继承。

5、在构造函数中设置vptr

在每一个对象实例中,vptr 必须被初始化指向其 vtbl。最好的初始化位置就是在类的构造函数中。

事实上,在构造函数中,C++ 编译器隐式的创建了一个初始化的vptr。在 C 语言里面, 我们必须显示的初始化vptr。下面就展示一下,在 Shape 的构造函数里面,如何去初始化这个 vptr。