R语言中dnorm, pnorm, qnorm与rnorm以及随机数

Python014

R语言中dnorm, pnorm, qnorm与rnorm以及随机数,第1张

--

title: R语言中dnorm, pnorm, qnorm与rnorm以及随机数

date: 2018-09-07 12:02:00

type: "tags"

tags:

在R语言中,与正态分布(或者说其它分布)有关的函数有四个,分别为dnorm,pnorm,qnorm和rnorm,其中,dnorm表示密度函数,pnorm表示分布函数,qnorm表示分位数函数,rnorm表示生成随机数的函数。在R中与之类似的函数还有很多,具体的可以通过 help(Distributions) 命令去查看,对于分位数或百分位数的一些介绍可以看这篇笔记 《分位数及其应用》 ,关于正态分布的知识可以看这篇笔记 《正态分布笔记》 。

现在这篇笔记就介绍一下这些函数的区别。

R提供了多种随机数生成器(random number generators, RNG),默认采用的是Mersenne twister方法产生的随机数,该方法是由Makoto Matsumoto和Takuji Nishimura于1997年提出来的,其循环周期是 。R里面还提供了了Wichmann-Hill、Marsaglia-Multicarry、Super-Duper、Knuth-TAOCP-2002、Knuth-TAOCP和L'Ecuyer-CMRG等几种随机数生成方法,可以通过 RNGkind() 函数进行更改,例如,如果要改为WIchmann-Hill方法,就使用如下语句:

在R中使用随机数函数,例如 rnorm() 函数来生成的随机数是不一样的,有时我们在做模拟时,为了比较不同的方法,就需要生成的随机数都一样,即重复生成相同的随机数,此时就可以使用 set.seed() 来设置随机数种子,其参数为整数,如下所示:

dnorm 中的 d 表示 density , norm 表示正态贫,这个函数是正态分布的 概率密度(probability density)函数 。

正态分布的公式如下所示:

给定x,μ和σ后, dnorm() 这个函数返回的就是会返回上面的这个公式的值,这个值就是Z-score,如果是标准正态分布,那么上述的公式就变成了这个样子,如下所示:

现在看一个案例,如下所示:

dnorm(0,mean=0,sd=1) 由于是标准正态分布函数的概率密度,这个命令其实可以直接写为 dnorm(0) 即可,如下所示:

再看一个非标准正态分布的案例,如下所示:

虽然在 dnorm() 中,x是一个概率密度函数(PDF,Probability Density Function)的独立变量,但它也能看作是一组经过Z转换后的一组变量,现在我们看一下使用 dnorm 来绘制一个正态分布的概率密度函数曲线,如下所示:

现在使用 dnorm() 函数计算一下Z_scores的概率密度,如下所示:

现在绘图,如下所示:

从上面的结果可以看出,在每个Z-score处, dnorm 可以绘制出这个Z-score对应的正态分布的pdf的高度。

pnorm 函数中的 p 表示Probability,它的功能是,在正态分布的PDF曲线上,返回从负无穷到 q 的积分,其中这个 q 指的是一个Z-score。现在我们大概就可以猜测出 pnorm(0) 的值是0.5,因为在标准正态分布曲线上,当Z-score等于0时,这个点正好在标准正态分布曲线的正中间,那么从负无穷到0之间的曲线面积就是整个标准正态分布曲线下面积的一半,如下所示:

pnorm 函数还能使用 lower.tail 参数,如果 lower.tail 设置为 FALSE ,那么 pnorm() 函数返回的积分就是从 q 到正无穷区间的PDF下的曲线面积,因此我们就知道了, pnorm(q) 与 1-pnorm(q,lower.tail=FALSE) 的结果是一样的,如下所示:

在计算机出现之前的时代里,统计学家们使用正态分布进行统计时,通常是要查正态分布表的,但是,在计算机时代,通常都不使用正态分布表了,在R中, pnorm() 这个函数完全可以取代正态分布表了,现在我们使用一个Z-scores的向量来计算一下相应的累积概率,如下所示:

以上就是标准正态分布的 累积分布函数(CDF,Cumulative Distribution Function) 曲线。

简单来说, qnorm 是正态分布 累积分布函数(CDF,Cumulative Distribution Function) 的反函数,也就是说它可以视为 pnorm 的反函数,这里的 q 指的是quantile,即分位数。

使用 qnorm 这个函数可以回答这个问题:正态分布中的第p个分位数的Z-score是多少?

现在我们来计算一下,在正态分布分布中,第50百分位数的Z-score是多少,如下所示:

再来看一个案例:在正态分布中,第96个百分位的Z-score是多少,如下所示:

再来看一个案例:在正态分布中,第99个百分位的Z-score是多少,如下所示:

再来看一下 pnorm() 这个函数,如下所示:

从上面我们可以看到, pnorm 这个函数的功能是,我们知道某个Z-score是多少,它位于哪个分位数上。

接着我们进一步举例来说明一下 qnorm 和 pnorm 的具体功能,如下所示:

现在进行绘图,如下所示:

rnomr() 函数的功能用于生成一组符合正态分布的随机数,在学习各种统计学方法时, rnorm 这个函数应该是最常用的,它的参数有 n , mean , sd ,其中n表示生成的随机数,mean与sd分别表示正态分布的均值与标准差,现在举个例子,如下所示:

现在我们绘制一下上面的几个向量的直方图,看一下它们的均值是否在70附近,如下所示:

在R语言中,生成不同分布的各种类型的函数都是以d,p,q,r开头的,使用原理跟上面的正态分布都一样。

sample() 函数是一个用于生成随机数的重要的核心函数,如果仅传递一个数值n给它,就会返回一个从1到n的自然数的排列,如果传递是 n:m 就是生成从n到m的随机数,如是是 7,5 ,则会生成5个小于7的随机数,如下所示:

从上面的结果可以看出来,这些数字都是不同的,也就是说,sample函数默认情况下是不重复抽样,每个值只出现一次,如果允许有重复抽样,需要添加参数 replace = TRUE ,如下所示:

sample函数通常会从某些向量中随机挑一些参数,如下所示:

也可以挑日期,如下所示:

上述分布函数前面加上r,p、q、d就可以表示相应的目的:

在初学C语言时,可能会遇到有些问题理解不透,或者表达方式与以往数学学习中不同(如运算符等),这就要求不气馁,不明白的地方多问多想,鼓足勇气进行学习,待学完后面的章节知识,前面的问题也就迎刃而解了,这一方面我感觉是我们同学最欠缺,大多学不好的就是因为一开始遇到困难就放弃,曾经和好多同学谈他的问题,回答是听不懂、不想听、放弃这样三个过程,我反问,这节课你听过课吗?回答又是没有,根本就没听过课,怎么说自己听不懂呢?相应的根本就没学习,又谈何学的好?

学习C语言始终要记住“曙光在前头”和“千金难买回头看”,“千金难买回头看”是学习知识的重要方法,就是说,学习后面的知识,不要忘了回头弄清遗留下的问题和加深理解前面的知识,这是我们学生最不易做到的,然而却又是最重要的。学习C语言就是要经过几个反复,才能前后贯穿,积累应该掌握的C知识。

那么,我们如何学好《C程序设计》呢?

一.学好C语言的运算符和运算顺序

这是学好《C程序设计》的基础,C语言的运算非常灵活,功能十分丰富,运算种类远多于其它程序设计语言。在表达式方面较其它程序语言更为简洁,如自加、自减、逗号运算和三目运算使表达式更为简单,但初学者往往会觉的这种表达式难读,关键原因就是对运算符和运算顺序理解不透不全。当多种不同运算组成一个运算表达式,即一个运算式中出现多种运算符时,运算的优先顺序和结合规则显得十分重要。在学习中,只要我们对此合理进行分类,找出它们与我们在数学中所学到运算之间的不同点之后,记住这些运算也就不困难了,有些运算符在理解后更会牢记心中,将来用起来得心应手,而有些可暂时放弃不记,等用到时再记不迟。

先要明确运算符按优先级不同分类,《C程序设计》运算符可分为15种优先级,从高到低,优先级为1 ~ 15,除第2、3级和第14级为从右至左结合外,其它都是从左至右结合,它决定同级运算符的运算顺序.

二.学好C语言的四种程序结构

(1)顺序结构

顺序结构的程序设计是最简单的,只要按照解决问题的顺序写出相应的语句就行,它的执行顺序是自上而下,依次执行。

例如;a = 3,b = 5,现交换a,b的值,这个问题就好像交换两个杯子水,这当然要用到第三个杯子,假如第三个杯子是c,那么正确的程序为: c = a; a = b; b = c; 执行结果是a = 5,b = c = 3如果改变其顺序,写成:a = b; c = a; b = c; 则执行结果就变成a = b = c = 5,不能达到预期的目的,初学者最容易犯这种错误。 顺序结构可以独立使用构成一个简单的完整程序,常见的输入、计算,输出三步曲的程序就是顺序结构,例如计算圆的面积,其程序的语句顺序就是输入圆的半径r,计算s = 3.14159*r*r,输出圆的面积s。不过大多数情况下顺序结构都是作为程序的一部分,与其它结构一起构成一个复杂的程序,例如分支结构中的复合语句、循环结构中的循环体等。

(2) 分支结构

顺序结构的程序虽然能解决计算、输出等问题,但不能做判断再选择。对于要先做判断再选择的问题就要使用分支结构。分支结构的执行是依据一定的条件选择执行路径,而不是严格按照语句出现的物理顺序。分支结构的程序设计方法的关键在于构造合适的分支条件和分析程序流程,根据不同的程序流程选择适当的分支语句。分支结构适合于带有逻辑或关系比较等条件判断的计算,设计这类程序时往往都要先绘制其程序流程图,然后根据程序流程写出源程序,这样做把程序设计分析与语言分开,使得问题简单化,易于理解。程序流程图是根据解题分析所绘制的程序执行流程图。

学习分支结构不要被分支嵌套所迷惑,只要正确绘制出流程图,弄清各分支所要执行的功能,嵌套结构也就不难了。嵌套只不过是分支中又包括分支语句而已,不是新知识,只要对双分支的理解清楚,分支嵌套是不难的。下面我介绍几种基本的分支结构。

①if(条件)

{

分支体

}

这种分支结构中的分支体可以是一条语句,此时“{ }”可以省略,也可以是多条语句即复合语句。它有两条分支路径可选,一是当条件为真,执行分支体,否则跳过分支体,这时分支体就不会执行。如:要计算x的绝对值,根据绝对值定义,我们知道,当x>=0时,其绝对值不变,而x<0时其绝对值是为x的反号,因此程序段为:if(x<0) x=-x

②if(条件)

{分支1}

else

{分支2}

这是典型的分支结构,如果条件成立,执行分支1,否则执行分支2,分支1和分支2都可以是1条或若干条语句构成。如:求ax^2+bx+c=0的根

分析:因为当b^2-4ac>=0时,方程有两个实根,否则(b^2-4ac<0)有两个共轭复根。其程序段如下:

d=b*b-4*a*c

if(d>=0)

{x1=(-b+sqrt(d))/2a

x1=(-b-sqrt(d))/2a

printf(“x1=%8.4f,x2=%8.4f\n”,x1,x2)

}

else

{r=-b/(2*a)

i =sqrt(-d)/(2*a)

printf(“x1=%8.4f+%8.4fi\n”r, i)

printf(“x2=%8.4f-%8.4fi\n”r,i)

}

③嵌套分支语句:其语句格式为:

if(条件1) {分支1};

else if(条件2) {分支2}

else if(条件3) {分支3}

……

else if(条件n) {分支n}

else {分支n+1}

嵌套分支语句虽可解决多个入口和出口的问题,但超过3重嵌套后,语句结构变得非常复杂,对于程序的阅读和理解都极为不便,建议嵌套在3重以内,超过3重可以用下面的语句。

④switch开关语句:该语句也是多分支选择语句,到底执行哪一块,取决于开关设置,也就是表达式的值与常量表达式相匹配的那一路,它不同if…else 语句,它的所有分支都是并列的,程序执行时,由第一分支开始查找,如果相匹配,执行其后的块,接着执行第2分支,第3分支……的块,直到遇到break语句;如果不匹配,查找下一个分支是否匹配。这个语句在应用时要特别注意开关条件的合理设置以及break语句的合理应用。

(3)循环结构:

循环结构可以减少源程序重复书写的工作量,用来描述重复执行某段算法的问题,这是程序设计中最能发挥计算机特长的程序结构,C语言中提供四种循环,即goto循环、while循环、do –while循环和for循环。四种循环可以用来处理同一问题,一般情况下它们可以互相代替换,但一般不提倡用goto循环,因为强制改变程序的顺序经常会给程序的运行带来不可预料的错误,在学习中我们主要学习while、do…while、for三种循环。常用的三种循环结构学习的重点在于弄清它们相同与不同之处,以便在不同场合下使用,这就要清楚三种循环的格式和执行顺序,将每种循环的流程图理解透彻后就会明白如何替换使用,如把while循环的例题,用for语句重新编写一个程序,这样能更好地理解它们的作用。特别要注意在循环体内应包含趋于结束的语句(即循环变量值的改变),否则就可能成了一个死循环,这是初学者的一个常见错误。

在学完这三个循环后,应明确它们的异同点:用while和do…while循环时,循环变量的初始化的操作应在循环体之前,而for循环一般在语句1中进行的;while 循环和for循环都是先判断表达式,后执行循环体,而do…while循环是先执行循环体后判断表达式,也就是说do…while的循环体最少被执行一次,而while 循环和for就可能一次都不执行。另外还要注意的是这三种循环都可以用break语句跳出循环,用continue语句结束本次循环,而goto语句与if构成的循环,是不能用break和 continue语句进行控制的。

顺序结构、分支结构和循环结构并不彼此孤立的,在循环中可以有分支、顺序结构,分支中也可以有循环、顺序结构,其实不管哪种结构,我们均可广义的把它们看成一个语句。在实际编程过程中常将这三种结构相互结合以实现各种算法,设计出相应程序,但是要编程的问题较大,编写出的程序就往往很长、结构重复多,造成可读性差,难以理解,解决这个问题的方法是将C程序设计成模块化结构。

(4)模块化程序结构

C语言的模块化程序结构用函数来实现,即将复杂的C程序分为若干模块,每个模块都编写成一个C函数,然后通过主函数调用函数及函数调用函数来实现一大型问题的C程序编写,因此常说:C程序=主函数+子函数。 因此,对函数的定义、调用、值的返回等中要尤其注重理解和应用,并通过上机调试加以巩固。

三.掌握一些简单的算法

编程其实一大部分工作就是分析问题,找到解决问题的方法,再以相应的编程语言写出代码。这就要求掌握算法,根据我们的《C程序设计》教学大纲中,只要求我们掌握一些简单的算法,在掌握这些基本算法后,要完成对问题的分析就容易了。如两个数的交换、三个数的比较、选择法排序和冒泡法排序,这就要求我们要清楚这些算法的内在含义

结语:当我们把握好上述几方面后,只要同学们能克服畏难、厌学、上课能专心听讲,做好练习与上机调试,其实C语言并不难学