统计里面,评价指数C-index和AUC的区别

Python018

统计里面,评价指数C-index和AUC的区别,第1张

其实指数C-index和AUC是差不多的,针对二分类 lo_go_is_tic 回归的 C-in_dex 等价于 ROC 曲线下面积AUC。C-index,英文名全称concordance index,中文里有人翻译成一致性指数,最早是由范德堡大学(Vanderbilt University)生物统计教教授Frank E Harrell Jr 1996年提出,主要用于计算生存分析中的COX模型预测值与真实之间的区分度(discrimination),AUC 主要反映二分类 lo_gis_tic 回归模型的预测能力,但 C-in_dex 可以评价各种模型预测结果的准确性,可以简单这样理解:C-in_dex 是 AUC 的扩展,AUC 是 C-in_dex 的一种特殊情况。

拓展资料:

1、一般评价模型的好坏主要有两个方面,一是模型的拟合优度(Goodness of Fit),常见的评价指标主要有R方、-2logL、AIC、BIC等;另外一个是模型的预测精度,顾名思义就是模型的真实值与预测值之间差别大小,均方误差,相对误差等。在临床应用上更注重预测精度,建模的主要目的是用于预测,而C-index它就属于模型评价指标中的预测精度。

2、C-in_dex 是一个可以用于判断各种模型区分能力的指标。针对二分类 lo_gis_tic 回归模型,C-in_dex 可简化为:某疾病病人的预测患病概率大于对照的预测患病概率的可能性。C-index在0.5-1之间(任意配对随机情况下一致与不一致刚好是0.5的概率)。0.5为完全不一致,说明该模型没有预测作用,1为完全一致,说明该模型预测结果与实际完全一致。一般情况下C-index在0.50-0.70为准确度较低:在0.71-0.90之间为准确度中等;而高于0.90则为高准确度。

3、AUC指标是临床研究中最常用的评价指标,其有数主要体现为:

(1)对样本是否均衡并不敏感,允许实际阳性、阴性个案数差距较大。

(2) 不需要提前设定阈值,而是通过遍历阈值的方式来达到整体的评估效果。

定义AUC值为ROC曲线右下方几何面积,取值范围为0到1,在实际建模过程中,根据AUC值所处范围可大致判断模型的泛化能力强弱:一般情况下AUC在0.50-0.70为准确度较低;在0.71-0.90之间为准确度中等;而高于0.90则为高准确度。

利用Hmisc包中的rcorr.cens函数 局限: - 只能处理一个预测变量 - 对超过2分类的分类变量处理粗糙

# 加载包及生成数据框,这里生成数据框主要是为了方便大家理解,因为大家通常都是将Excel的数据读进R,存储为数据框格式

library(survival)

library(Hmisc)

age <- rnorm(200, 50, 10)

bp <- rnorm(200,120, 15)

d.time <- rexp(200)

cens <- runif(200,.5,2)

death <- d.time <= cens

os <- pmin(d.time, cens)

sample.data <- data.frame(age = age,bp = bp,os = os,death = death)

#让我们看一下生成的例子数据的前6行

head(sample.data)

##age bp os death

## 1 33.18822 114.6965 1.106501 FALSE

## 2 41.86970 123.2265 1.365944 FALSE

## 3 50.41484 124.9522 0.867119 FALSE

## 4 45.66936 127.3237 1.155765 TRUE

## 5 39.79024 134.8846 1.257501 TRUE

## 6 31.89088 140.9382 1.125504 FALSE

rcorr.cens的代码及结果,第一个值就是C指数,同时也有Dxy的值

rcorr.cens(sample.data$age, Surv(sample.data$os, sample.data$death))

##C IndexDxy S.D. nmissing

## 4.528492e-01 -9.430156e-02 5.565299e-02 2.000000e+02 0.000000e+00

## uncensored Relevant Pairs Concordant Uncertain

## 1.290000e+02 3.172800e+04 1.436800e+04 8.072000e+03

rcorrcens的代码及结果,注意rcorrcens的写法是写成formula(公式)的形式,较为方便;而rcorr.cens的 写法是只能在前面写上一个自变量,并且不支持data = ...的写法,有点繁琐。较为遗憾的是这两种方法得到的C指数的标准误需要通过S.D./2间接得到。

r <- rcorrcens(Surv(os, death) ~ age + bp,data = sample.data)

r

## Somers' Rank Correlation for Censored DataResponse variable:Surv(os, death)

##

## CDxy aDxySDZ P n

## age 0.453 -0.094 0.094 0.056 1.69 0.0902 200

## bp 0.498 -0.003 0.003 0.054 0.06 0.9517 200

机器学习模型评价指标及R实现

1.ROC曲线

考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

列联表如下表所示,1代表正类,0代表负类。

真正类率(true positive rate ,TPR), 也称为 Sensitivity,计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。

假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。

真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1 - FPR。 在一个二分类模型中,对于所得到的连续结果,假设已确定一个阈值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阈值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。

ROC曲线正是由两个变量1-specificity(x轴) 和 Sensitivity(y轴)绘制的,其中1-specificity为FPR,Sensitivity为TPR。随着阈值的改变,就能得到每个阈值所对应的1-specificity和Sensitivity,最后绘制成图像。

该图像的面积如果越接近1,那么我们则认为该分类器效果越好。从直觉上来说,假设我们的预测全部100%正确,那么不管阈值怎么变(除了阈值等于0和1时),我们的Sensitivity(真正类)率永远等于1,1-specificity(1-真负类率)永远等于0,所以该图就是个正方形,面积为1,效果最好。

样例数据集:

library(ROCR)

data(ROCR.simple)

ROCR.simple<-as.data.frame(ROCR.simple)

head(ROCR.simple)

# predictions labels

# 1 0.6125478 1

# 2 0.3642710 1

# 3 0.4321361 0

# 4 0.1402911 0

# 5 0.3848959 0

# 6 0.2444155 1

绘制ROC图:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

perf <- performance(pred,"tpr","fpr")

plot(perf,colorize=TRUE)

2.AUC值

AUC值就是ROC曲线下的面积,可以通过以下代码计算:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

auc.tmp <- performance(pred,"auc")

auc <- as.numeric([email protected])

3.Recall-Precision(PR)曲线

同样是一个二分类的模型的列联表,我们可以定义:

然后我们通过计算不同的阈值,以Recall为X轴,Precision为Y轴绘制图像。

PR图可以有这样的应用,引用一个例子[1]:

1. 地震的预测

对于地震的预测,我们希望的是RECALL非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲PRECISION。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次对了8次漏了两次。

2. 嫌疑人定罪

基于不错怪一个好人的原则,对于嫌疑人的定罪我们希望是非常准确的。及时有时候放过了一些罪犯(recall低),但也是值得的。

对于分类器来说,本质上是给一个概率,此时,我们再选择一个CUTOFF点(阀值),高于这个点的判正,低于的判负。那么这个点的选择就需要结合你的具体场景去选择。反过来,场景会决定训练模型时的标准,比如第一个场景中,我们就只看RECALL=99.9999%(地震全中)时的PRECISION,其他指标就变得没有了意义。

绘制代码:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

RP.perf <- performance(pred, "prec", "rec")

plot (RP.perf)

#查看阈值为0.1,0.5,0.9下的召回率和精确率

plot(RP.perf, colorize=T, colorkey.pos="top",

print.cutoffs.at=c(0.1,0.5,0.9), text.cex=1,

text.adj=c(1.2, 1.2), lwd=2)

一般这曲线越靠上,则认为模型越好。对于这个曲线的评价,我们可以使用F分数来描述它。就像ROC使用AUC来描述一样。

4.F1分数

分数定义如下:

我们可以使用R计算F1分数:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

f.perf <- performance(pred, "f")

plot(f.perf) #横坐标为阈值的取值

5.均方根误差RMSE

回归模型中最常用的评价模型便是RMSE(root mean square error,平方根误差),其又被称为RMSD(root mean square deviation),其定义如下:

其中,yi是第i个样本的真实值,y^i是第i个样本的预测值,n是样本的个数。该评价指标使用的便是欧式距离。

??RMSE虽然广为使用,但是其存在一些缺点,因为它是使用平均误差,而平均值对异常点(outliers)较敏感,如果回归器对某个点的回归值很不理性,那么它的误差则较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。 所以有的时候我们会先剔除掉异常值,然后再计算RMSE。

R语言中RMSE计算代码如下:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

rmse.tmp<-performance(pred, "rmse")

[email protected]

6.SAR

SAR是一个结合了各类评价指标,想要使得评价更具有鲁棒性的指标。(cf. Caruana R., ROCAI2004):

其中准确率(Accuracy)是指在分类中,使用测试集对模型进行分类,分类正确的记录个数占总记录个数的比例:

pred <- prediction(ROCR.simple$predictions, ROCR.simple$labels)

sar.perf<-performance(pred, "sar")

7.多分类的AUC[5]

将二类 AUC 方法直接扩展到多类分类评估中, 存在表述空间维数高、复杂性大的问题。 一般采用将多类分类转成多个二类分类的思想, 用二类 AUC 方法来评估多类分类器的性能。Fawcett 根据这种思想提出了 F- AUC 方法[4], 该评估模型如下

其中AUC(i,rest)是计算 用 ” 1- a- r”方 法 得 到 的 每 个 二 类 分 类器的 AUC 值,“ 1- a- r”方法思想是 k 类分类问题构造 k 个二类分类器, 第 i 个二类分类器中用第 i 类的训练样本作为正例, 其他所有样本作为负例。 p ( i) 是计算每个类在所有样本中占有的比例,