R语言中的特殊值及缺失值NA的处理方法

Python013

R语言中的特殊值及缺失值NA的处理方法,第1张

R语言中存在一些空值(null-able values),当我们进行数据分析时,理解这些值是非常重要的。

通常来说,R语言中存在:

这四种数据类型在R中都有相应的函数用以判断。

NA即Not available,是一个 长度为1的逻辑常数 ,通常代表缺失值。NA可以被强制转换为任意其他数据类型的向量。

可以采用is.na()进行判断。另外,NA和“NA”不可以互换。

NULL是一个 对象(object) ,当 表达式或函数产生无定义的值 或者 导入数据类型未知的数据 时就会返回NULL。

可以采用is.null()进行判断。

NaN即Not A Number,是一个 长度为1的逻辑值向量

可以采用is.nan()进行判断。另外,我们可以采用is.finite()或is.infinite()函数来判断元素是有限的还是无限的,而对NaN进行判断返回的结果都是False。

Inf即Infinity无穷大,通常代表一个很大的数或以0为除数的运算结果,Inf说明数据并没有缺失(NA)。

可以采用is.finite()或is.finite()进行判断。

理解完四种类型数值以后,我们来看看该采取什么方法来处理最最常见的缺失值NA。

小白学统计在推文《有缺失值怎么办?系列之二:如何处理缺失值》里说“ 处理缺失值最好的方式是什么?答案是:没有最好的方式。或者说,最好的方式只有一个,预防缺失,尽量不要缺失。

在缺失数很少且数据量很大的时候,直接删除法的效率很高,而且通常对结果的影响不会太大。

如数据框df共有1000行数据,有10行包含NA,不妨直接采用函数na.omit()来去掉带有NA的行,也可以使用tidyr包的drop_na()函数来指定去除哪一列的NA。

用其他数值填充数据框中的缺失值NA。

使用tidyr包的replace_na()函数。

使用tidyr包的fill()函数将上/下一行的数值填充至选定列中NA。

除此之外,类似原理的填充法还有均值填充法(用该变量的其余数值的均值来填充)、LOCF(last observation carried forward)、BOCF(baseline observation carried forward)、WOCF(worst observation carried forward)等。

当分类自变量出现NA时,把缺失值单独作为新的一类。

在性别中,只有男和女两类,虚拟变量的话以女性为0,男性为1。如果出现了缺失值,可以把缺失值赋值为2,单独作为一类。由于将缺失值赋值,在统计时就不会把它当做缺失值删除,避免了由于这一个变量缺失而导致整个观测值被删除的情况。

假定有身高和体重两个变量,要填补体重的缺失值,我们可以把体重作为因变量,建立体重对身高的回归方程,然后根据身高的非缺失值,预测体重的缺失值。

参考资料:

2016-08-23 05:17 砍柴问樵夫

数据缺失有多种原因,而大部分统计方法都假定处理的是完整矩阵、向量和数据框。

缺失数据的分类:

完全随机缺失 :若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。

随机缺失: 若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。

非随机缺失: 若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NMAR) 。

处理缺失数据的方法有很多,但哪种最适合你,需要在实践中检验。

下面一副图形展示处理缺失数据的方法:

处理数据缺失的一般步骤:

1、识别缺失数据

2、检测导致数据缺失的原因

3、删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1、识别缺失数据:

R语言中, NA 代表缺失值, NaN 代表不可能值, Inf 和 -Inf 代表正无穷和负无穷。

在这里,推荐使用 is.na , is.nan , is.finite , is.infinite 4个函数去处理。

x<-c(2,NA,0/0,5/0)

#判断缺失值

is.na(x)

#判断不可能值

is.nan(x)

#判断无穷值

is.infinite(x)

#判断正常值

is.finite(x)

推荐一个函数: complete.case() 可用来识别矩阵或数据框中没有缺失值的行!

展示出数据中缺失的行 (数据集sleep来自包VIM)

sleep[!complete.cases(sleep),]

判断数据集中有多少缺失

针对复杂的数据集,怎么更好的探索数据缺失情况呢?

mice包 中的 md.pattern() 函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格。

备注:0表示变量的列中没有缺失,1则表示有缺失值。

第一行给出了没有缺失值的数目(共多少行)。

第一列表示各缺失值的模式。

最后一行给出了每个变量的缺失值数目。

最后一列给出了变量的数目(这些变量存在缺失值)。

在这个数据集中,总共有38个数据缺失。

图形化展示缺失数据:

aggr(sleep,prop=F,numbers=T)

matrixplot(sleep)

浅色表示值小,深色表示值大,默认缺失值为红色。

marginmatrix(sleep)

上述变量太多,我们可以选出部分变量展示:

x <- sleep[, 1:5]

x[,c(1,2,4)] <- log10(x[,c(1,2,4)])

marginmatrix(x)

为了更清晰,可以进行成对展示:

marginplot(sleep[c("Gest","Dream")])

在这里(左下角)可以看到,Dream和Gest分别缺失12和4个数据。

左边的红色箱线图展示的是在Gest值缺失的情况下Dream的分布,而蓝色箱线图展示的Gest值不缺失的情况下Dream的分布。同样的,Gest箱线图在底部。

2、缺失值数据的处理

行删除法: 数据集中含有缺失值的行都会被删除,一般假定缺失数据是完全随机产生的,并且缺失值只是很少一部分,对结果不会造成大的影响。

即:要有足够的样本量,并且删除缺失值后不会有大的偏差!

行删除的函数有 na.omit() 和 complete.case()

newdata<-na.omit(sleep)

sum(is.na(newdata))

newdata<-sleep[complete.cases(sleep),]

sum(is.na(newdata))

均值/中位数等填充: 这种方法简单粗暴,如果填充值对结果影响不怎么大,这种方法倒是可以接受,并且有可能会产生令人满意的结果。

方法1:

newdata<-sleep

mean(newdata$Dream,na.rm = T)

newdata[is.na(newdata$Dream),"Dream"]<-1.972

方法2:

Hmisc包更加简单,可以插补均值、中位数等,你也可以插补指定值。

library(Hmisc)

impute(newdata$Dream,mean)

impute(newdata$Dream,median)

impute(newdata$Dream,2)

mice包插补缺失数据: 链式方程多元插值,首先利用mice函数建模再用complete函数生成完整数据。

下图展示mice包的操作过程:

mice():从一个含缺失值的数据框开始,返回一个包含多个完整数据集对象(默认可以模拟参数5个完整的数据集)

with():可依次对每个完整数据集应用统计建模

pool():将with()生成的单独结果整合到一起

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

在这里,m是默认值5,指插补数据集的数量

插补方法是pmm:预测均值匹配,可以用methods(mice)查看其他方法

maxit指迭代次数,seed指设定种子数(和set.seed同义)

概述插补后的数据:

summary(data)

在这上面可以看到数据集中变量的观测值缺失情况,每个变量的插补方法, VisitSequence 从左至右展示了插补的变量, 预测变量矩阵 (PredictorMatrix)展示了进行插补过程的含有缺失数据的变量,它们利用了数据集中其他变量的信息。(在矩阵中,行代表插补变量,列代表为插补提供信息的变量,1

和0分别表示使用和未使用。)

查看整体插补的数据:

data$imp

查看具体变量的插补数据:

data$imp$Dream

最后,最重要的是生成一个完整的数据集

completedata<-complete(data)

判断还有没有缺失值,如果没有,结果返回FLASE

anyNA(completedata)

针对以上插补结果,我们可以查看原始数据和插补后的数据的分布情况

library(lattice)

xyplot(data,Dream~NonD+Sleep+Span+Gest,pch=21)

图上,插补值是洋红点呈现出的形状,观测值是蓝色点。

densityplot(data)

图上,洋红线是每个插补数据集的数据密度曲线,蓝色是观测值数据的密度曲线。

stripplot(data, pch = 21)

上图中,0代表原始数据,1-5代表5次插补的数据,洋红色的点代表插补值。

下面我们分析对数据拟合一个线性模型:

完整数据:

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

model<-with(data,lm(Dream~Span+Gest))

pooled<-pool(model)

summary(pooled)

fim指的是各个变量缺失信息的比例,lambda指的是每个变量对缺失数据的贡献大小

缺失数据(在运行中,自动会行删除):

lm.fit <- lm(Dream~Span+Gest, data = sleep,na.action=na.omit)

summary(lm.fit)

完整数据集和缺失数据集进行线性回归后,参数估计和P值基本一直。 缺失值是完全随机产生的 。如果缺失比重比较大的话,就不适合使用行删除法,建议使用多重插补法。

kNN插值法: knnImputation函数使用k近邻方法来填充缺失值。对于需要插值的记录,基于欧氏距离计算k个和它最近的观测。接着将这k个近邻的数据利用距离逆加权算出填充值,最后用该值替代缺失值。

library(DMwR)

newdata<-sleep

knnOutput <- knnImputation(newdata)

anyNA(knnOutput)

head(knnOutput)

R语言删除列,举例如下:

x是一个数据框

1.删除数据框x中含有缺失值NA的行可以用下面方法

(1)

<span style="font-size:18px">x <- x[complete.cases(x),]</span>

(2)

<span style="font-size:18px">x <- na.omit(x)</span>

2.删除数据框x中含有缺失值NA的列可以用下面方法

<span style="font-size:18px">na_flag <- apply(is.na(x), 2, sum)

x <- x[,which(na_flag == 0)]</span>。

Ok,如此操作,用R语言就可以删除列了。