R语言-KNN算法

Python032

R语言-KNN算法,第1张

1、K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

2、KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

3、KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。

简言之,就是将未标记的案例归类为与它们最近相似的、带有标记的案例所在的类 。

原理及举例

工作原理:我们知道样本集中每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据与训练集的数据对应特征进行比较,找出“距离”最近的k(通常k<20)数据,选择这k个数据中出现最多的分类作为新数据的分类。

算法描述

1、计算已知数据集中的点与当前点的距离

2、按距离递增次序排序

3、选取与当前数据点距离最近的K个点

4、确定前K个点所在类别出现的频率

5、返回频率最高的类别作为当前类别的预测

距离计算方法有"euclidean"(欧氏距离),”minkowski”(明科夫斯基距离), "maximum"(切比雪夫距离), "manhattan"(绝对值距离),"canberra"(兰式距离), 或 "minkowski"(马氏距离)等

Usage

knn(train, test, cl, k = 1, l = 0, prob =FALSE, use.all = TRUE)

Arguments

train

matrix or data frame of training set cases.

test

matrix or data frame of test set cases. A vector will  be interpreted as a row vector for a single case.

cl

factor of true classifications of training set

k

number of neighbours considered.

l

minimum vote for definite decision, otherwisedoubt. (More precisely, less thank-ldissenting votes are allowed, even

ifkis  increased by ties.)

prob

If this is true, the proportion of the votes for the

winning class are returned as attributeprob.

use.all

controls handling of ties. If true, all distances equal

to thekth largest are

included. If false, a random selection of distances equal to thekth is chosen to use exactlykneighbours.

kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = "contr.dummy", ordered = "contr.ordinal"))

参数:

formula                            A formula object.

train                                 Matrix or data frame of training set cases.

test                                   Matrix or data frame of test set cases.

na.action                         A function which indicates what should happen when the data contain ’NA’s.

k                                       Number of neighbors considered.

distance                          Parameter of Minkowski distance.

kernel                              Kernel to use. Possible choices are "rectangular" (which is standard unweighted knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or beta(4,4)), "cos", "inv", "gaussian", "rank" and "optimal".

ykernel                            Window width of an y-kernel, especially for prediction of ordinal classes.

scale                                Logical, scale variable to have equal sd.

contrasts                         A vector containing the ’unordered’ and ’ordered’ contrasts to use

kknn的返回值如下:

fitted.values              Vector of predictions.

CL                              Matrix of classes of the k nearest neighbors.

W                                Matrix of weights of the k nearest neighbors.

D                                 Matrix of distances of the k nearest neighbors.

C                                 Matrix of indices of the k nearest neighbors.

prob                            Matrix of predicted class probabilities.

response                   Type of response variable, one of continuous, nominal or ordinal.

distance                     Parameter of Minkowski distance.

call                              The matched call.

terms                          The ’terms’ object used.

iris%>%ggvis(~Length,~Sepal.Width,fill=~Species)

library(kknn)

data(iris)

dim(iris)

m<-(dim(iris))[1]

val<-sample(1:m,size=round(m/3),replace=FALSE,prob=rep(1/m,m))

建立训练数据集

data.train<-iris[-val,]

建立测试数据集

data.test<-iris[val,]

调用kknn  之前首先定义公式

formula : Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

iris.kknn<-kknn(Species~.,iris.train,iris.test,distance=1,kernel="triangular")

summary(iris.kknn)

# 获取fitted.values

fit <- fitted(iris.kknn)

# 建立表格检验判类准确性

table(iris.valid$Species, fit)

# 绘画散点图,k-nearest neighbor用红色高亮显示

pcol <- as.character(as.numeric(iris.valid$Species))

pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")[(iris.valid$Species != fit)+1]

二、R语言knn算法

install.packages("class")

library(class)

对于新的测试样例基于距离相似度的法则,确定其K个最近的邻居,在K个邻居中少数服从多数

确定新测试样例的类别

1、获得数据

2、理解数据

对数据进行探索性分析,散点图

如上例

3、确定问题类型,分类数据分析

4、机器学习算法knn

5、数据处理,归一化数据处理

normalize <- function(x){

num <- x - min(x)

denom <- max(x) - min(x)

return(num/denom)

}

iris_norm <-as.data.frame(lapply(iris[,1:4], normalize))

summary(iris_norm)

6、训练集与测试集选取

一般按照3:1的比例选取

方法一、set.seed(1234)

ind <- sample(2,nrow(iris), replace=TRUE, prob=c(0.67, 0.33))

iris_train <-iris[ind==1, 1:4]

iris_test <-iris[ind==2, 1:4]

train_label <-iris[ind==1, 5]

test_label <-iris[ind==2, 5]

方法二、

ind<-sample(1:150,50)

iris_train<-iris[-ind,]

iris_test<-iris[ind,1:4]

iris_train<-iris[-ind,1:4]

train_label<-iris[-ind,5]

test_label<-iris[ind,5]

7、构建KNN模型

iris_pred<-knn(train=iris_train,test=iris_test,cl=train_label,k=3)

8、模型评价

交叉列联表法

table(test_label,iris_pred)

实例二

数据集

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

导入数据

dir <-'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'wdbc.data <-read.csv(dir,header = F)

names(wdbc.data) <- c('ID','Diagnosis','radius_mean','texture_mean','perimeter_mean','area_mean','smoothness_mean','compactness_mean','concavity_mean','concave points_mean','symmetry_mean','fractal dimension_mean','radius_sd','texture_sd','perimeter_sd','area_sd','smoothness_sd','compactness_sd','concavity_sd','concave points_sd','symmetry_sd','fractal dimension_sd','radius_max_mean','texture_max_mean','perimeter_max_mean','area_max_mean','smoothness_max_mean','compactness_max_mean','concavity_max_mean','concave points_max_mean','symmetry_max_mean','fractal dimension_max_mean')

table(wdbc.data$Diagnosis)## M = malignant, B = benign

wdbc.data$Diagnosis <- factor(wdbc.data$Diagnosis,levels =c('B','M'),labels = c(B ='benign',M ='malignant'))

2016-08-23 05:17 砍柴问樵夫

数据缺失有多种原因,而大部分统计方法都假定处理的是完整矩阵、向量和数据框。

缺失数据的分类:

完全随机缺失 :若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR)。

随机缺失: 若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR)。

非随机缺失: 若缺失数据不属于MCAR或MAR,则数据为非随机缺失(NMAR) 。

处理缺失数据的方法有很多,但哪种最适合你,需要在实践中检验。

下面一副图形展示处理缺失数据的方法:

处理数据缺失的一般步骤:

1、识别缺失数据

2、检测导致数据缺失的原因

3、删除包含缺失值的实例或用合理的数值代替(插补)缺失值。

1、识别缺失数据:

R语言中, NA 代表缺失值, NaN 代表不可能值, Inf 和 -Inf 代表正无穷和负无穷。

在这里,推荐使用 is.na , is.nan , is.finite , is.infinite 4个函数去处理。

x<-c(2,NA,0/0,5/0)

#判断缺失值

is.na(x)

#判断不可能值

is.nan(x)

#判断无穷值

is.infinite(x)

#判断正常值

is.finite(x)

推荐一个函数: complete.case() 可用来识别矩阵或数据框中没有缺失值的行!

展示出数据中缺失的行 (数据集sleep来自包VIM)

sleep[!complete.cases(sleep),]

判断数据集中有多少缺失

针对复杂的数据集,怎么更好的探索数据缺失情况呢?

mice包 中的 md.pattern() 函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格。

备注:0表示变量的列中没有缺失,1则表示有缺失值。

第一行给出了没有缺失值的数目(共多少行)。

第一列表示各缺失值的模式。

最后一行给出了每个变量的缺失值数目。

最后一列给出了变量的数目(这些变量存在缺失值)。

在这个数据集中,总共有38个数据缺失。

图形化展示缺失数据:

aggr(sleep,prop=F,numbers=T)

matrixplot(sleep)

浅色表示值小,深色表示值大,默认缺失值为红色。

marginmatrix(sleep)

上述变量太多,我们可以选出部分变量展示:

x <- sleep[, 1:5]

x[,c(1,2,4)] <- log10(x[,c(1,2,4)])

marginmatrix(x)

为了更清晰,可以进行成对展示:

marginplot(sleep[c("Gest","Dream")])

在这里(左下角)可以看到,Dream和Gest分别缺失12和4个数据。

左边的红色箱线图展示的是在Gest值缺失的情况下Dream的分布,而蓝色箱线图展示的Gest值不缺失的情况下Dream的分布。同样的,Gest箱线图在底部。

2、缺失值数据的处理

行删除法: 数据集中含有缺失值的行都会被删除,一般假定缺失数据是完全随机产生的,并且缺失值只是很少一部分,对结果不会造成大的影响。

即:要有足够的样本量,并且删除缺失值后不会有大的偏差!

行删除的函数有 na.omit() 和 complete.case()

newdata<-na.omit(sleep)

sum(is.na(newdata))

newdata<-sleep[complete.cases(sleep),]

sum(is.na(newdata))

均值/中位数等填充: 这种方法简单粗暴,如果填充值对结果影响不怎么大,这种方法倒是可以接受,并且有可能会产生令人满意的结果。

方法1:

newdata<-sleep

mean(newdata$Dream,na.rm = T)

newdata[is.na(newdata$Dream),"Dream"]<-1.972

方法2:

Hmisc包更加简单,可以插补均值、中位数等,你也可以插补指定值。

library(Hmisc)

impute(newdata$Dream,mean)

impute(newdata$Dream,median)

impute(newdata$Dream,2)

mice包插补缺失数据: 链式方程多元插值,首先利用mice函数建模再用complete函数生成完整数据。

下图展示mice包的操作过程:

mice():从一个含缺失值的数据框开始,返回一个包含多个完整数据集对象(默认可以模拟参数5个完整的数据集)

with():可依次对每个完整数据集应用统计建模

pool():将with()生成的单独结果整合到一起

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

在这里,m是默认值5,指插补数据集的数量

插补方法是pmm:预测均值匹配,可以用methods(mice)查看其他方法

maxit指迭代次数,seed指设定种子数(和set.seed同义)

概述插补后的数据:

summary(data)

在这上面可以看到数据集中变量的观测值缺失情况,每个变量的插补方法, VisitSequence 从左至右展示了插补的变量, 预测变量矩阵 (PredictorMatrix)展示了进行插补过程的含有缺失数据的变量,它们利用了数据集中其他变量的信息。(在矩阵中,行代表插补变量,列代表为插补提供信息的变量,1

和0分别表示使用和未使用。)

查看整体插补的数据:

data$imp

查看具体变量的插补数据:

data$imp$Dream

最后,最重要的是生成一个完整的数据集

completedata<-complete(data)

判断还有没有缺失值,如果没有,结果返回FLASE

anyNA(completedata)

针对以上插补结果,我们可以查看原始数据和插补后的数据的分布情况

library(lattice)

xyplot(data,Dream~NonD+Sleep+Span+Gest,pch=21)

图上,插补值是洋红点呈现出的形状,观测值是蓝色点。

densityplot(data)

图上,洋红线是每个插补数据集的数据密度曲线,蓝色是观测值数据的密度曲线。

stripplot(data, pch = 21)

上图中,0代表原始数据,1-5代表5次插补的数据,洋红色的点代表插补值。

下面我们分析对数据拟合一个线性模型:

完整数据:

library(mice)

newdata<-sleep

data<-mice(newdata,m = 5,method='pmm',maxit=100,seed=1)

model<-with(data,lm(Dream~Span+Gest))

pooled<-pool(model)

summary(pooled)

fim指的是各个变量缺失信息的比例,lambda指的是每个变量对缺失数据的贡献大小

缺失数据(在运行中,自动会行删除):

lm.fit <- lm(Dream~Span+Gest, data = sleep,na.action=na.omit)

summary(lm.fit)

完整数据集和缺失数据集进行线性回归后,参数估计和P值基本一直。 缺失值是完全随机产生的 。如果缺失比重比较大的话,就不适合使用行删除法,建议使用多重插补法。

kNN插值法: knnImputation函数使用k近邻方法来填充缺失值。对于需要插值的记录,基于欧氏距离计算k个和它最近的观测。接着将这k个近邻的数据利用距离逆加权算出填充值,最后用该值替代缺失值。

library(DMwR)

newdata<-sleep

knnOutput <- knnImputation(newdata)

anyNA(knnOutput)

head(knnOutput)