如何对XGBoost模型进行参数调优

Python013

如何对XGBoost模型进行参数调优,第1张

XGBoost参数调优完全指南(附Python代码)译注:文内提供的代码和运行结果有一定差异,可以从这里完整代码对照参考。另外,我自己跟着教程做的时候,发现我的库无法解析字符串类型的特征,所以只用其中一部分特征做的,具体数值跟文章中不一样,反而可以帮助理解文章。所以大家其实也可以小小修改一下代码,不一定要完全跟着教程做~ ^0^需要提前安装好的库:简介如果你的预测模型表现得有些不尽如人意,那就用XGBoost吧。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据。构造一个使用XGBoost的模型十分简单。但是,提高这个模型的表现就有些困难(至少我觉得十分纠结)。这个算法使用了好几个参数。所以为了提高模型的表现,参数的调整十分必要。在解决实际问题的时候,有些问题是很难回答的——你需要调整哪些参数?这些参数要调到什么值,才能达到理想的输出?这篇文章最适合刚刚接触XGBoost的人阅读。在这篇文章中,我们会学到参数调优的技巧,以及XGboost相关的一些有用的知识。以及,我们会用Python在一个数据集上实践一下这个算法。你需要知道的XGBoost(eXtreme Gradient Boosting)是Gradient Boosting算法的一个优化的版本。特别鸣谢:我个人十分感谢Mr Sudalai Rajkumar (aka SRK)大神的支持,目前他在AV Rank中位列第二。如果没有他的帮助,就没有这篇文章。在他的帮助下,我们才能给无数的数据科学家指点迷津。给他一个大大的赞!内容列表1、XGBoost的优势2、理解XGBoost的参数3、调整参数(含示例)1、XGBoost的优势XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:1、正则化标准GBM的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。 实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。2、并行处理XGBoost可以实现并行处理,相比GBM有了速度的飞跃。 不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?我希望你理解了这句话的意思。 XGBoost 也支持Hadoop实现。3、高度的灵活性XGBoost 允许用户定义自定义优化目标和评价标准 它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。4、缺失值处理XGBoost内置处理缺失值的规则。 用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。5、剪枝当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。 XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。 这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。6、内置交叉验证XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。 而GBM使用网格搜索,只能检测有限个值。7、在已有的模型基础上继续XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。 sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。相信你已经对XGBoost强大的功能有了点概念。注意这是我自己总结出来的几点,你如果有更多的想法,尽管在下面评论指出,我会更新这个列表的!2、XGBoost的参数XGBoost的作者把所有的参数分成了三类:1、通用参数:宏观函数控制。2、Booster参数:控制每一步的booster(tree/regression)。3、学习目标参数:控制训练目标的表现。在这里我会类比GBM来讲解,所以作为一种基础知识。通用参数这些参数用来控制XGBoost的宏观功能。1、booster[默认gbtree]选择每次迭代的模型,有两种选择:gbtree:基于树的模型gbliner:线性模型2、silent[默认0]当这个参数值为1时,静默模式开启,不会输出任何信息。 一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。3、nthread[默认值为最大可能的线程数]这个参数用来进行多线程控制,应当输入系统的核数。 如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。还有两个参数,XGBoost会自动设置,目前你不用管它。接下来咱们一起看booster参数。booster参数尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。1、eta[默认0.3]和GBM中的 learning rate 参数类似。 通过减少每一步的权重,可以提高模型的鲁棒性。 典型值为0.01-0.2。2、min_child_weight[默认1]决定最小叶子节点样本权重和。 和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。 这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。 但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。3、max_depth[默认6]和GBM中的参数相同,这个值为树的最大深度。 这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。 需要使用CV函数来进行调优。 典型值:3-104、max_leaf_nodes树上最大的节点或叶子的数量。 可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2个叶子。 如果定义了这个参数,GBM会忽略max_depth参数。5、gamma[默认0]在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。 这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。6、max_delta_step[默认0]这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。 通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。 这个参数一般用不到,但是你可以挖掘出来它更多的用处。7、subsample[默认1]和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例。 减小这个参数的值,算法会更加保守,避免过拟合。但是,如果这个值设置得过小,它可能会导致欠拟合。 典型值:0.5-18、colsample_bytree[默认1]和GBM里面的max_features参数类似。用来控制每棵随机采样的列数的占比(每一列是一个特征)。 典型值:0.5-19、colsample_bylevel[默认1]用来控制树的每一级的每一次分裂,对列数的采样的占比。 我个人一般不太用这个参数,因为subsample参数和colsample_bytree参数可以起到相同的作用。但是如果感兴趣,可以挖掘这个参数更多的用处。10、lambda[默认1]权重的L2正则化项。(和Ridge regression类似)。 这个参数是用来控制XGBoost的正则化部分的。虽然大部分数据科学家很少用到这个参数,但是这个参数在减少过拟合上还是可以挖掘出更多用处的。11、alpha[默认1]权重的L1正则化项。(和Lasso regression类似)。 可以应用在很高维度的情况下,使得算法的速度更快。12、scale_pos_weight[默认1]在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。学习目标参数这个参数用来控制理想的优化目标和每一步结果的度量方法。1、objective[默认reg:linear]这个参数定义需要被最小化的损失函数。最常用的值有:binary:logistic 二分类的逻辑回归,返回预测的概率(不是类别)。 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。在这种情况下,你还需要多设一个参数:num_class(类别数目)。 multi:softprob 和multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。2、eval_metric[默认值取决于objective参数的取值]对于有效数据的度量方法。 对于回归问题,默认值是rmse,对于分类问题,默认值是error。 典型值有:rmse 均方根误差(∑Ni=1?2N??????√) mae 平均绝对误差(∑Ni=1|?|N) logloss 负对数似然函数值 error 二分类错误率(阈值为0.5) merror 多分类错误率 mlogloss 多分类logloss损失函数 auc 曲线下面积3、seed(默认0)随机数的种子 设置它可以复现随机数据的结果,也可以用于调整参数如果你之前用的是Scikit-learn,你可能不太熟悉这些参数。但是有个好消息,python的XGBoost模块有一个sklearn包,XGBClassifier。这个包中的参数是按sklearn风格命名的。会改变的函数名是:1、eta ->learning_rate2、lambda->reg_lambda3、alpha->reg_alpha你肯定在疑惑为啥咱们没有介绍和GBM中的’n_estimators’类似的参数。XGBClassifier中确实有一个类似的参数,但是,是在标准XGBoost实现中调用拟合函数时,把它作为’num_boosting_rounds’参数传入。调整参数(含示例)我已经对这些数据进行了一些处理:City变量,因为类别太多,所以删掉了一些类别。 DOB变量换算成年龄,并删除了一些数据。 增加了 EMI_Loan_Submitted_Missing 变量。如果EMI_Loan_Submitted变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的EMI_Loan_Submitted变量。 EmployerName变量,因为类别太多,所以删掉了一些类别。 因为Existing_EMI变量只有111个值缺失,所以缺失值补充为中位数0。 增加了 Interest_Rate_Missing 变量。如果Interest_Rate变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Interest_Rate变量。 删除了Lead_Creation_Date,从直觉上这个特征就对最终结果没什么帮助。 Loan_Amount_Applied, Loan_Tenure_Applied 两个变量的缺项用中位数补足。 增加了 Loan_Amount_Submitted_Missing 变量。如果Loan_Amount_Submitted变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的Loan_Amount_Submitted变量。 增加了 Loan_Tenure_Submitted_Missing 变量。如果 Loan_Tenure_Submitted 变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的 Loan_Tenure_Submitted 变量。 删除了LoggedIn, Salary_Account 两个变量 增加了 Processing_Fee_Missing 变量。如果 Processing_Fee 变量的数据缺失,则这个参数的值为1。否则为0。删除了原先的 Processing_Fee 变量。 Source前两位不变,其它分成不同的类别。 进行了量化和独热编码(一位有效编码)。如果你有原始数据,可以从资源库里面data_preparation的Ipython notebook 文件,然后自己过一遍这些步骤。首先,import必要的库,然后加载数据。#Import libraries:import pandas as pdimport numpy as npimport xgboost as xgbfrom xgboost.sklearn import XGBClassifierfrom sklearn import cross_validation, metrics #Additional scklearn functionsfrom sklearn.grid_search import GridSearchCV #Perforing grid searchimport matplotlib.pylab as plt%matplotlib inlinefrom matplotlib.pylab import rcParamsrcParams['figure.figsize'] = 12, 4train = pd.read_csv('train_modified.csv')target = 'Disbursed'IDcol = 'ID'注意我import了两种XGBoost:xgb - 直接引用xgboost。接下来会用到其中的“cv”函数。 XGBClassifier - 是xgboost的sklearn包。这个包允许我们像GBM一样使用Grid Search 和并行处理。在向下进行之前,我们先定义一个函数,它可以帮助我们建立XGBoost models 并进行交叉验证。好消息是你可以直接用下面的函数,以后再自己的models中也可以使用它。def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):if useTrainCV:xgb_param = alg.get_xgb_params()xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)alg.set_params(n_estimators=cvresult.shape[0])#Fit the algorithm on the dataalg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc')#Predict training set:dtrain_predictions = alg.predict(dtrain[predictors])dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]#Print model report:print "\nModel Report"print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions)print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob)feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)feat_imp.plot(kind='bar', title='Feature Importances')plt.ylabel('Feature Importance Score')这个函数和GBM中使用的有些许不同。不过本文章的重点是讲解重要的概念,而不是写代码。如果哪里有不理解的地方,请在下面评论,不要有压力。注意xgboost的sklearn包没有“feature_importance”这个量度,但是get_fscore()函数有相同的功能。参数调优的一般方法。我们会使用和GBM中相似的方法。需要进行如下步骤:选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。2. 对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。3. xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。4. 降低学习速率,确定理想参数。咱们一起详细地一步步进行这些操作。第一步:确定学习速率和tree_based 参数调优的估计器数目。为了确定boosting 参数,我们要先给其它参数一个初始值。咱们先按如下方法取值:1、max_depth = 5 :这个参数的取值最好在3-10之间。我选的起始值为5,但是你也可以选择其它的值。起始值在4-6之间都是不错的选择。2、min_child_weight = 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。3、gamma = 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。4、subsample,colsample_bytree = 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。5、scale_pos_weight = 1: 这个值是因为类别十分不平衡。注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率就设成默认的0.1。然后用xgboost中的cv函数来确定最佳的决策树数量。前文中的函数可以完成这个工作。#Choose all predictors except target IDcolspredictors = [x for x in train.columns if x not in [target,IDcol]]xgb1 = XGBClassifier(learning_rate =0.1,n_estimators=1000,max_depth=5,min_child_weight=1,gamma=0,subsample=0.8,colsample_bytree=0.8,objective= 'binary:logistic',nthread=4,scale_pos_weight=1,seed=27)modelfit(xgb1, train, predictors)从输出结果可以看出,在学习速率为0.1时,理想的决策树数目是140。这个数字对你而言可能比较高,当然这也取决于你的系统的性能。注意:在AUC(test)这里你可以看到测试集的AUC值。但是如果你在自己的系统上运行这些命令,并不会出现这个值。因为数据并不公开。这里提供的值仅供参考。生成这个值的代码部分已经被删掉了。<喎?"/kf/ware/vc/" target="_blank" class="keylink">vcD4NCjwvYmxvY2txdW90ZT4NCjxoMSBpZD0="第二步-maxdepth-和-minweight-参数调优">第二步: max_depth 和 min_weight 参数调优我们先对这两个参数调优,是因为它们对最终结果有很大的影响。首先,我们先大范围地粗调参数,然后再小范围地微调。注意:在这一节我会进行高负荷的栅格搜索(grid search),这个过程大约需要15-30分钟甚至更久,具体取决于你系统的性能。你也可以根据自己系统的性能选择不同的值。param_test1 = {'max_depth':range(3,10,2),'min_child_weight':range(1,6,2)}gsearch1 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=5,min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8,objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27), param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)gsearch1.fit(train[predictors],train[target])gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_

XGBoost参数调优完全指南(附Python代码) 译注:文内提供代码运行结定差异载完整代码照参考另外我自跟着教程做候发现我库解析字符串类型特征所用其部特征做具体数值跟文章反帮助理解文章所家其实修改代码定要完全跟着教程做~ ^0^ 需要提前安装库: 简介 预测模型表现些尽意用XGBoost吧XGBoost算现已经数据工程师重要武器种十精致算处理各种规则数据 构造使用XGBoost模型十简单提高模型表现些困难(至少我觉十纠结)算使用几参数所提高模型表现参数调整十必要解决实际问题候些问题难答——需要调整哪些参数些参数要调值才能达理想输 篇文章适合刚刚接触XGBoost阅读篇文章我参数调优技巧及XGboost相关些用知识及我用Python数据集实践算 需要知道 XGBoost(eXtreme Gradient Boosting)Gradient Boosting算优化版本 特别鸣谢:我十谢Mr Sudalai Rajkumar (aka SRK)神支持目前AV Rank位列第二没帮助没篇文章帮助我才能给数数据科家指点迷津给赞 内容列表 一、XGBoost优势 二、理解XGBoost参数 三、调整参数(含示例) 一、XGBoost优势 XGBoost算给预测模型带能力提升我表现更解候我高准确率背原理更解候我发现具优势: 一、则化 标准GBM实现没像XGBoost则化步骤则化减少拟合帮助 实际XGBoost则化提升(regularized boosting)技术闻名 二、并行处理 XGBoost实现并行处理相比GBM速度飞跃 众所周知Boosting算顺序处理能并行呢每课树构造都依赖于前棵树具体让我能用核处理器构造树呢我希望理解句意思 XGBoost 支持Hadoop实现 三、高度灵性 XGBoost 允许用户定义自定义优化目标评价标准 模型增加全新维度所我处理受任何限制 四、缺失值处理 XGBoost内置处理缺失值规则 用户需要提供其本同值作参数传进作缺失值取值XGBoost同节点遇缺失值采用同处理并且习未遇缺失值处理 5、剪枝 裂遇负损失GBM停止裂GBM实际贪算 XGBoost直裂指定深度(max_depth)剪枝某节点再值除裂 种做优点负损失(-二)面损失(+一0)候显现GBM-二处停遇负值XGBoost继续裂发现两裂综合起+吧保留两裂 陆、内置交叉验证 XGBoost允许每轮boosting迭代使用交叉验证便获优boosting迭代数 GBM使用中国格搜索能检测限值 漆、已模型基础继续 XGBoost轮结继续训练特性某些特定应用巨优势 sklearnGBM实现功能两种算点致 相信已经XGBoost强功能点概念注意我自总结几点更想尽管面评论指我更新列表 二、XGBoost参数 XGBoost作者所参数三类: 一、通用参数:宏观函数控制 二、Booster参数:控制每步booster(tree/regression) 三、习目标参数:控制训练目标表现 我类比GBM讲解所作种基础知识 通用参数 些参数用控制XGBoost宏观功能 一、booster[默认gbtree] 选择每迭代模型两种选择: gbtree:基于树模型 gbliner:线性模型 二、silent[默认0] 参数值一静默模式启输任何信息 般参数保持默认0能帮我更理解模型 三、nthread[默认值能线程数] 参数用进行线程控制应输入系统核数 希望使用CPU全部核要输入参数算自检测 两参数XGBoost自设置目前用管接咱起看booster参数 booster参数 尽管两种booster供选择我介绍tree booster表现远远胜linear booster所linear booster少用 一、eta[默认0.三] GBM learning rate 参数类似 通减少每步权重提高模型鲁棒性 典型值0.0一-0.二 二、min_child_weight[默认一] 决定叶节点本权重 GBM min_child_leaf 参数类似完全XGBoost参数本权重GBM参数本总数 参数用于避免拟合值较避免模型习局部特殊本 值高导致欠拟合参数需要使用CV调整 三、max_depth[默认陆] GBM参数相同值树深度 值用避免拟合max_depth越模型更具体更局部本 需要使用CV函数进行调优 典型值:三-一0 四、max_leaf_nodes 树节点或叶数量 替代max_depth作用二叉树深度n树 n二 叶 定义参数GBM忽略max_depth参数 5、gamma[默认0] 节点裂裂损失函数值降才裂节点Gamma指定节点裂所需损失函数降值 参数值越算越保守参数值损失函数息息相关所需要调整 陆、max_delta_step[默认0] 参数限制每棵树权重改变步参数值0意味着没约束赋予某值让算更加保守 通参数需要设置各类别本十平衡逻辑归帮助 参数般用挖掘更用处 漆、subsample[默认一] GBMsubsample参数模参数控制于每棵树随机采比例 减参数值算更加保守避免拟合值设置能导致欠拟合 典型值:0.5-一 吧、colsample_bytree[默认一] GBM面max_features参数类似用控制每棵随机采列数占比(每列特征) 典型值:0.5-一 9、colsample_bylevel[默认一] 用控制树每级每裂列数采占比 我般太用参数subsample参数colsample_bytree参数起相同作用兴趣挖掘参数更用处 一0、lambda[默认一] 权重L二则化项(Ridge regression类似) 参数用控制XGBoost则化部虽部数据科家少用参数参数减少拟合挖掘更用处 一一、alpha[默认一] 权重L一则化项(Lasso regression类似) 应用高维度情况使算速度更快 一二、scale_pos_weight[默认一] 各类别本十平衡参数设定值使算更快收敛 习目标参数 参数用控制理想优化目标每步结度量 一、objective[默认reg:linear] 参数定义需要化损失函数用值: binary:logistic 二类逻辑归返预测概率(类别) multi:softmax 使用softmax类器返预测类别(概率) 种情况需要设参数:num_class(类别数目) multi:softprob multi:softmax参数返每数据属于各类别概率 二、eval_metric[默认值取决于objective参数取值] 于效数据度量 于归问题默认值rmse于类问题默认值error 典型值: rmse 均根误差( ∑Ni=一?二N??????√ ) mae 平均绝误差( ∑Ni=一|?|N ) logloss 负数似函数值 error 二类错误率(阈值0.5) merror 类错误率 mlogloss 类logloss损失函数 auc 曲线面积 三、seed(默认0) 随机数种 设置复现随机数据结用于调整参数 前用Scikit-learn,能太熟悉些参数消息pythonXGBoost模块sklearn包XGBClassifier包参数按sklearn风格命名改变函数名: 一、eta ->learning_rate 二、lambda->reg_lambda 三、alpha->reg_alpha 肯定疑惑啥咱没介绍GBM’n_estimators’类似参数XGBClassifier确实类似参数标准XGBoost实现调用拟合函数作’num_boosting_rounds’参数传入 调整参数(含示例) 我已经些数据进行些处理: City变量类别太所删掉些类别 DOB变量换算龄并删除些数据 增加 EMI_Loan_Submitted_Missing 变量EMI_Loan_Submitted变量数据缺失则参数值一否则0删除原先EMI_Loan_Submitted变量 EmployerName变量类别太所删掉些类别 Existing_EMI变量一一一值缺失所缺失值补充位数0 增加 Interest_Rate_Missing 变量Interest_Rate变量数据缺失则参数值一否则0删除原先Interest_Rate变量 删除Lead_Creation_Date直觉特征终结没帮助 Loan_Amount_Applied, Loan_Tenure_Applied 两变量缺项用位数补足 增加 Loan_Amount_Submitted_Missing 变量Loan_Amount_Submitted变量数据缺失则参数值一否则0删除原先Loan_Amount_Submitted变量 增加 Loan_Tenure_Submitted_Missing 变量 Loan_Tenure_Submitted 变量数据缺失则参数值一否则0删除原先 Loan_Tenure_Submitted 变量 删除LoggedIn, Salary_Account 两变量 增加 Processing_Fee_Missing 变量 Processing_Fee 变量数据缺失则参数值一否则0删除原先 Processing_Fee 变量 Source前两位变其同类别 进行量化独热编码(位效编码) 原始数据资源库面载data_preparationIpython notebook 文件自遍些步骤 首先import必要库加载数据 #Import libraries: import pandas as pd import numpy as np import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn import cross_validation, metrics   #Additional     scklearn functions from sklearn.grid_search import GridSearchCV   #Perforing grid search import matplotlib.pylab as plt %matplotlib inline from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 一二, 四 train = pd.read_csv('train_modified.csv') target = 'Disbursed' IDcol = 'ID' 注意我import两种XGBoost: xgb - 直接引用xgboost接用其cv函数 XGBClassifier - xgboostsklearn包包允许我像GBM使用Grid Search 并行处理 向进行前我先定义函数帮助我建立XGBoost models 并进行交叉验证消息直接用面函数再自models使用 def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50): if useTrainCV:    xgb_param = alg.get_xgb_params()    xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)    cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,        metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)    alg.set_params(n_estimators=cvresult.shape[0]) #Fit the algorithm on the data alg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc') #Predict training set: dtrain_predictions = alg.predict(dtrain[predictors]) dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,一] #Print model report: print "\nModel Report" print "Accuracy : %.四g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions) print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score') 函数GBM使用些许同本文章重点讲解重要概念写代码哪理解请面评论要压力注意xgboostsklearn包没feature_importance量度get_fscore()函数相同功能 参数调优般 我使用GBM相似需要进行步骤: 一. 选择较高习速率(learning rate)般情况习速率值0.一于同问题理想习速率候0.050.三间波选择应于习速率理想决策树数量XGBoost用函数cv函数每迭代使用交叉验证并返理想决策树数量 二. 于给定习速率决策树数量进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)确定棵树程我选择同参数待我举例说明 三. xgboost则化参数调优(lambda, alpha)些参数降低模型复杂度提高模型表现 四. 降低习速率确定理想参数 咱起详细步步进行些操作 第步:确定习速率tree_based 参数调优估计器数目 确定boosting 参数我要先给其参数初始值咱先按取值: 一、max_depth = 5 :参数取值三-一0间我选起始值5选择其值起始值四-陆间都错选择 二、min_child_weight = 一:选比较值极平衡类问题某些叶节点值比较 三、gamma = 0: 起始值选其比较值0.一0.二间参数继要调整 四、subsample,colsample_bytree = 0.吧: 见初始值典型值范围0.5-0.9间 5、scale_pos_weight = 一: 值类别十平衡 注意哦面些参数值初始估计值继需要调优习速率设默认0.一用xgboostcv函数确定佳决策树数量前文函数完工作 #Choose all predictors except target &IDcols predictors = [x for x in train.columns if x not in [target,IDcol]] xgb一 = XGBClassifier( learning_rate =0.一, n_estimators=一000, max_depth=5, min_child_weight=一, gamma=0, subsample=0.吧, colsample_bytree=0.吧, objective= 'binary:logistic', nthread=四, scale_pos_weight=一, seed=二漆) modelfit(xgb一, train, predictors) 输结看习速率0.一理想决策树数目一四0数字言能比较高取决于系统性能 注意:AUC(test)看测试集AUC值自系统运行些命令并现值数据并公提供值仅供参考值代码部已经删掉kf/ware/vc/" target="_blank" class="keylink">vcD四NCjwvYmxvY二txdW90ZT四NCjxoMSBpZD0="第二步-maxdepth--minweight-参数调优">第二步: max_depth min_weight 参数调优 我先两参数调优终结影响首先我先范围粗调参数再范围微调 注意:节我进行高负荷栅格搜索(grid search)程约需要一5-三0钟甚至更久具体取决于系统性能根据自系统性能选择同值 param_test一 = { 'max_depth':range(三,一0,二), 'min_child_weight':range(一,陆,二) } gsearch一 = GridSearchCV(estimator = XGBClassifier(         learning_rate =0.一, n_estimators=一四0, max_depth=5, min_child_weight=一, gamma=0, subsample=0.吧,             colsample_bytree=0.吧, objective= 'binary:logistic', nthread=四,     scale_pos_weight=一, seed=二漆), param_grid = param_test一,     scoring='roc_auc',n_jobs=四,iid=False, cv=5) gsearch一.fit(train[predictors],train[target]) gsearch一.grid_scores_, gsearch一.best_params_,     gsearch一.best_score