「聚类分析」16聚类分析之KMeans算法与K中心点算法

Python019

「聚类分析」16聚类分析之KMeans算法与K中心点算法,第1张

1.聚类

    聚类属于无监督式学习。在无监督式学习中,训练样本的标记信息是未知的,算法通过对 无标记样本 的学习来揭示蕴含于数据中的性质和规律。聚类算法的任务是根据数据特征将数据集相似的数据划分到同一簇。

2.聚类分析

    聚类分析是将物理的或者抽象的数据集合划分为多个类别的过程,聚类之后的每个类别中任意两个数据样本之间具有较高的相似度,而不同类别的数据样本之间具有较低的相似度。

3.聚类算法常用分类

①划分聚类方法

②层次聚类方法

③基于密度的聚类方法

④基于网格的聚类方法

4.聚类分析中相似度的计算方法

(1)连续型属性的相似度计算方法:欧式距离

(2)二值离散型属性的相似度计算方法

数据样本的二值离散型属性的取值情况:

(3)多值离散型属性的相似度计算方法:多值离散型属性转化为二值离散型属性  

(4)混合类型属性的相似度计算方法

    将属性按照类型分组,每个新的数据集中只包含一种类型的属性,然后对每个数据集进行单独的聚类分析,随后把混合类型的属性放在一起处理,进行一次聚类分析。

5.KMeans算法(划分法)

    KMeans也称为K均值,是一种聚类算法。它可以根据数据特征将数据集分成K个不同的簇,簇的个数K是由用户指定的。KMeans算法基于 距离 来度量实例间的相似程度(与KNN算法一样,大多数问题采用欧氏距离),然后把较为相似的实例划分到同一簇。

(1)聚类的性能度量大致有以下两类:

①外部指标:将聚类结果与某个“参考模型”进行比较。

②内部指标:直接考察聚类结果而不利于参考模型。

(2)聚类算法的过程:

①随机选择k个点作为聚类中心;

②计算各个点到这k个点的距离;

③将对应的点聚到与它最近的这个聚类中心;

④重新计算聚类中心;

⑤比较当前聚类中心与前一次聚类中心,如果是同一个点,得到聚类结果,如果不是,则重复②③④⑤。

(3)聚类算法的实现:

【注】 模型效果评估指标说明:

1)inertias_:是K-Means模型对象的属性,它作为没有真实分类结果标签下的非监督式评估指标。表示样本到最近的聚类中心的距离总和。 值越小越好,越小表示样本在类间的分布越集中。

2)兰德指数(Rand index):需要给定实际类别信息C,假设n是聚类结果,a表示在C与K中都是同类别的元素对数,b表示在C与K中都是不同类别的元素对数,则兰德指数为:

RI取值范围为[0,1], 值越大意味着聚类结果与真实情况越吻合。

对于随机结果,RI并不能保证分数接近零。为了实现“在聚类结果随机产生的情况下,指标应该接近零”,调整兰德系数(Adjusted rand index)被提出,它具有更高的区分度:

ARI取值范围为[−1,1], 值越大意味着聚类结果与真实情况越吻合。 从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。

3)同质化得分(Homogeneity):如果所有的聚类都只包含属于单个类的成员的数据点,则聚类结果满足同质性。取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

4)完整性得分(Complenteness):如果作为给定类的成员的所有数据点是相同集群的元素,则聚类结果满足完整性。取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

5)v_meansure_score:同质化和完整性之间的谐波平均值,v=2*(同质化*完整性)/(同质化+完整性),取值范围[0,1], 值越大意味着聚类结果与真实情况越符合。

6.k中心点算法

(1)原理

①随机选取k个中心点;

②遍历所有数据,将每个数据划分到最近的中心点中;

③计算每个聚类的平均值,并作为新的中心点;

④重复②③,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代。

(2)与KMeans算法对比

    K-中心点聚类的 基本思想 和K-Means的思想相同,实质上是对K-means算法的优化和改进。在K-means中, 异常数据对其的算法过程会有较大的影响 。在K-means算法执行过程中,可以通过随机的方式选择初始质心,也只有初始时通过随机方式产生的质心才是实际需要聚簇集合的中心点,而后面通过不断迭代产生的新的质心很可能并不是在聚簇中的点。如果某些异常点距离质心相对较大时,很可能导致重新计算得到的质心偏离了聚簇的真实中心。

一、层次聚类

1)距离和相似系数

r语言中使用dist(x, method = "euclidean",diag = FALSE, upper = FALSE, p = 2) 来计算距离。其中x是样本矩阵或者数据框。method表示计算哪种距离。method的取值有:

euclidean                欧几里德距离,就是平方再开方。

maximum                切比雪夫距离

manhattan 绝对值距离

canberra Lance 距离

minkowski            明科夫斯基距离,使用时要指定p值

binary                    定性变量距离.

定性变量距离: 记m个项目里面的 0:0配对数为m0 ,1:1配对数为m1,不能配对数为m2,距离=m1/(m1+m2)

diag 为TRUE的时候给出对角线上的距离。upper为TURE的时候给出上三角矩阵上的值。

r语言中使用scale(x, center = TRUE, scale = TRUE) 对数据矩阵做中心化和标准化变换。

如只中心化 scale(x,scale=F) ,

r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。下面利用sweep对矩阵x进行极差标准化变换

?

1

2

3

>center <-sweep(x, 2, apply(x, 2, mean)) #在列的方向上减去均值。

>R <-apply(x, 2, max) -apply(x,2,min)   #算出极差,即列上的最大值-最小值

>x_star <-sweep(center, 2, R, "/")        #把减去均值后的矩阵在列的方向上除以极差向量

?

1

2

3

>center <-sweep(x, 2, apply(x, 2, min)) #极差正规化变换

>R <-apply(x, 2, max) -apply(x,2,min)

>x_star <-sweep(center, 2, R, "/")

有时候我们不是对样本进行分类,而是对变量进行分类。这时候,我们不计算距离,而是计算变量间的相似系数。常用的有夹角和相关系数。

r语言计算两向量的夹角余弦:

?

1

2

y <-scale(x, center =F, scale =T)/sqrt(nrow(x)-1)

C <-t(y) %*%y

相关系数用cor函数

2)层次聚类法

层次聚类法。先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最段距离。。。

r语言中使用hclust(d, method = "complete", members=NULL) 来进行层次聚类。

其中d为距离矩阵。

method表示类的合并方法,有:

single            最短距离法

complete        最长距离法

median        中间距离法

mcquitty        相似法

average        类平均法

centroid        重心法

ward            离差平方和法

?

1

2

3

4

5

6

7

8

> x <-c(1,2,6,8,11)      #试用一下

> dim(x) <-c(5,1)

> d <-dist(x)

> hc1 <-hclust(d,"single")

> plot(hc1)

> plot(hc1,hang=-1,type="tirangle")             #hang小于0时,树将从底部画起。

#type = c("rectangle", "triangle"),默认树形图是方形的。另一个是三角形。

#horiz  TRUE 表示竖着放,FALSE表示横着放。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

> z <-scan()

1: 1.0000.8460.8050.8590.4730.3980.3010.382

9: 0.8461.0000.8810.8260.3760.3260.2770.277

17: 0.8050.8811.0000.8010.3800.3190.2370.345

25: 0.8590.8260.8011.0000.4360.3290.3270.365

33: 0.4730.3760.3800.4361.0000.7620.7300.629

41: 0.3980.3260.3190.3290.7621.0000.5830.577

49: 0.3010.2770.2370.3270.7300.5831.0000.539

57: 0.3820.4150.3450.3650.6290.5770.5391.000

65: 

Read 64items

> names

[1] "shengao""shoubi""shangzhi""xiazhi""tizhong"

[6] "jingwei""xiongwei""xiongkuang"

> r <-matrix(z,nrow=8,dimnames=list(names,names))

> d <-as.dist(1-r)

> hc <-hclust(d)

> plot(hc)

然后可以用rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,border = 2, cluster = NULL)来确定类的个数。 tree就是求出来的对象。k为分类的个数,h为类间距离的阈值。border是画出来的颜色,用来分类的。

?

1

2

3

> plot(hc)

> rect.hclust(hc,k=2)

> rect.hclust(hc,h=0.5)

result=cutree(model,k=3) 该函数可以用来提取每个样本的所属类别

二、动态聚类k-means

层次聚类,在类形成之后就不再改变。而且数据比较大的时候更占内存。

动态聚类,先抽几个点,把周围的点聚集起来。然后算每个类的重心或平均值什么的,以算出来的结果为分类点,不断的重复。直到分类的结果收敛为止。r语言中主要使用kmeans(x, centers, iter.max = 10, nstart = 1, algorithm  =c("Hartigan-Wong", "Lloyd","Forgy", "MacQueen"))来进行聚类。centers是初始类的个数或者初始类的中心。iter.max是最大迭代次数。nstart是当centers是数字的时候,随机集合的个数。algorithm是算法,默认是第一个。

?

使用knn包进行Kmean聚类分析

将数据集进行备份,将列newiris$Species置为空,将此数据集作为测试数据集

>newiris <- iris

>newiris$Species <- NULL

在数据集newiris上运行Kmean聚类分析, 将聚类结果保存在kc中。在kmean函数中,将需要生成聚类数设置为3

>(kc <- kmeans(newiris, 3)) 

K-means clustering with 3 clusters of sizes 38, 50, 62: K-means算法产生了3个聚类,大小分别为38,50,62. 

Cluster means: 每个聚类中各个列值生成的最终平均值

  Sepal.Length Sepal.Width Petal.Length Petal.Width

1     5.006000    3.428000     1.462000    0.246000

2     5.901613    2.748387     4.393548    1.433871

3     6.850000    3.073684     5.742105    2.071053

Clustering vector: 每行记录所属的聚类(2代表属于第二个聚类,1代表属于第一个聚类,3代表属于第三个聚类)

  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[37] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[73] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3

[109] 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3

[145] 3 3 2 3 3 2

Within cluster sum of squares by cluster: 每个聚类内部的距离平方和   

[1] 15.15100 39.82097 23.87947

(between_SS / total_SS =  88.4 %) 组间的距离平方和占了整体距离平方和的的88.4%,也就是说各个聚类间的距离做到了最大

Available components: 运行kmeans函数返回的对象所包含的各个组成部分

[1] "cluster"      "centers"      "totss"        "withinss"    

[5] "tot.withinss" "betweenss"    "size"  

("cluster"是一个整数向量,用于表示记录所属的聚类  

"centers"是一个矩阵,表示每聚类中各个变量的中心点

"totss"表示所生成聚类的总体距离平方和

"withinss"表示各个聚类组内的距离平方和

"tot.withinss"表示聚类组内的距离平方和总量

"betweenss"表示聚类组间的聚类平方和总量

"size"表示每个聚类组中成员的数量)

创建一个连续表,在三个聚类中分别统计各种花出现的次数

>table(iris$Species, kc$cluster)           

              1  2  3

  setosa      0 50  0

  versicolor  2  0 48

  virginica  36  0 14

根据最后的聚类结果画出散点图,数据为结果集中的列"Sepal.Length"和"Sepal.Width",颜色为用1,2,3表示的缺省颜色

>plot(newiris[c("Sepal.Length", "Sepal.Width")], col = kc$cluster)

在图上标出每个聚类的中心点

〉points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3, pch = 8, cex=2)

三、DBSCAN

动态聚类往往聚出来的类有点圆形或者椭圆形。基于密度扫描的算法能够解决这个问题。思路就是定一个距离半径,定最少有多少个点,然后把可以到达的点都连起来,判定为同类。在r中的实现

dbscan(data, eps, MinPts, scale, method, seeds, showplot, countmode)

其中eps是距离的半径,minpts是最少多少个点。 scale是否标准化(我猜) ,method 有三个值raw,dist,hybird,分别表示,数据是原始数据避免计算距离矩阵,数据就是距离矩阵,数据是原始数据但计算部分距离矩阵。showplot画不画图,0不画,1和2都画。countmode,可以填个向量,用来显示计算进度。用鸢尾花试一试

?

1

2

3

4

5

6

7

8

9

10

11

> install.packages("fpc", dependencies=T)

> library(fpc)

> newiris <-iris[1:4]

> model <-dbscan(newiris,1.5,5,scale=T,showplot=T,method="raw")# 画出来明显不对 把距离调小了一点

> model <-dbscan(newiris,0.5,5,scale=T,showplot=T,method="raw")

> model #还是不太理想……

dbscan Pts=150MinPts=5eps=0.5

        012

border 34518

seed    04053

total  344571

聚类分析有两种主要计算方法,分别是凝聚层次聚类(Agglomerative hierarchical method)和K均值聚类(K-Means)。

层次聚类又称为系统聚类,首先要定义样本之间的距离关系,距离较近的归为一类,较远的则属于不同的类。可用于定义“距离”的统计量包括了欧氏距离 (euclidean)、马氏距离(manhattan)、 两项距离(binary)、明氏距离(minkowski)。还包括相关系数和夹角余弦。 层次聚类首先将每个样本单独作为一类,然后将不同类之间距离最近的进行合并,合并后重新计算类间距离。这个过程一直持续到将所有样本归为一类为止。在计算类间距离时则有六种不同的方法,分别是最短距离法、最长距离法、类平均法、重心法、中间距离法、离差平方和法。 下面我们用iris数据集来进行聚类分析,在R语言中所用到的函数为hclust。

首先提取iris数据中的4个数值变量,然后计算其欧氏距离矩阵。然后将矩阵绘制热图,从图中可以看到颜色越深表示样本间距离越近,大致上可以区分出三到四个区块,其样本之间比较接近。 data=iris[,-5] dist.e=dist(data,method='euclidean') heatmap(as.matrix(dist.e),labRow = F, labCol = F) X 然后使用hclust函数建立聚类模型,结果存在model1变量中,其中ward参数是将类间距离计算方法设置为离差平方和法。

使用plot(model1)可以绘制出聚类树图。如果我们希望将类别设为3类,可以使用cutree函数提取每个样本所属的类别。 model1=hclust(dist.e,method='ward') result=cutree(model1,k=3) 为了显示聚类的效果,我们可以结合多维标度和聚类的结果。先将数据用MDS进行降维,然后以不同的的形状表示原本的分类,用不同的颜色来表示聚类的结果。可以看到setose品种聚类很成功,但有一些virginica品种的花被错误和virginica品种聚类到一起。