线性调频扩频技术,非蜂窝广域网络的“活力之水”

html-css024

线性调频扩频技术,非蜂窝广域网络的“活力之水”,第1张

​Chirp,中文译名啁啾(读音:“周纠”),是一种编码脉冲技术。CSS是英文Chirp Spread Spectrum的缩写,中文意为啁啾扩频,又称线性调频扩频,是数字通信中的一种扩频技术。CSS技术能够提升无线通信的性能和距离,实现比FSK(Frequency Shift Keying,频移键控)等调制技术距离更远的无线通信,这非常有助于非蜂窝广域网络规模化的组网应用。本文就从CSS技术、市场、射频收发器等方面做简要阐述。

CSS扩频技术传输性能优异  实现更远距离的无线通信

CSS技术并非是一种新的技术。在自然界里,Chirp脉冲就为海豚和蝙蝠等生物所用。20世纪40年代Hüttmann教授发明了雷达应用专利,后由Sidney Darlington进一步将CSS技术引入雷达系统创造性地开发了脉冲压缩(Chirp)雷达。自1997年以来人们开始研究将CSS技术应用于商业的无线数据传输。后来,IEEE 802.15.4标准将CSS指定为了一种用于低速率无线个人局域网(LR-WPAN)的技术,实现了数据速率可扩展性、远距离、更低功耗和成本,其与差分相移键控调制(DPSK)等技术相结合,可以实现更好的通信性能。CSS技术使用了其全部分配带宽来广播信号,从而使其对信道噪声具有一定的鲁棒性。CSS技术在非常低的功率下也能够抵抗多径衰落,非常适用于要求低功耗和较低数据速率的应用场景。CSS技术的低成本、低功耗、远距离以及数据速率的可扩展性等特性为产品商业化应用提供了现实的可能。

从CSS技术应用情况来看,德国Nanotron公司使用CSS技术在2.4GHz频段上实现了570米的距离通信。美国Semtech公司的LoRa产品使用CSS技术在Sub-1GHz频段上实现了几公里,甚至几十公里的距离通信。

CSS技术通信距离远可以在一定范围内实现更大规模的无线连接,大大降低无线接入和组网的成本,组建经济高效的无线广域网络,有助于物联网络规模化部署应用。CSS技术的普及应用将为新兴的非蜂窝广域网络市场的发展注入了新的活力,将会有力地推动行业应用的发展。

非蜂窝广域网络方兴未艾 物联网发展步入规模化应用阶段

低功耗广域网络(Low-Power Wide Area Network, LPWAN)大致可以分为蜂窝和非蜂窝广域网络。蜂窝广域网络是指由运营商建设的基于蜂窝技术的网络,一般是指3GPP主导的物联网标准,代表技术有NB-IoT、LTE-M(eMTC)和EC-GSM-IoT等;非蜂窝广域网络主要是指由企业自主建设使用免许可频段组建的网络,代表技术有SIGFOX、LoRaWAN、ZETA等。也有的提出0G网络,是相对于1G/2G/3G/4G而言,在通信领域一般是指蜂窝移动电话之前的移动电话技术,如无线电话。在物联网领域,0G指的是一个低带宽的无线网络,没有SIM卡、没有流量、低成本接入、远距离通信、传输少量数据的网络,也就是非蜂窝广域网络。非蜂窝广域网络的发展是源于对数据大规模采集和大量设备管理等的需求,并借助互联网技术和平台提升了基于数据的智能化管理水平。物联网市场发展步入规模化应用阶段。目前,非蜂窝广域网络主要应用于市政、园区、水务、消防、物流、家居、电力、社区、工厂、农业、环境等领域。

不同网络技术示意图

实际上,非蜂窝广域网络和蜂窝广域网络相互之间是一种相互依存互为补充的关系。一般地,非蜂窝广域网络都是通过网关(或称为集中器,或称为基站)连接到互联网,而网关连接到互联网的方式一般是有线或蜂窝网络等公网,最终还是要走公网的管道,毕竟有线和蜂窝网络是广泛存在的基础性网络。另一方面,传感器或设备多是基于微控制器(MCU)的,受其资源限制,仅可运行轻量的简单通信协议或定制化通信协议,通过网关转换成互联网协议(IP),网关起到了非蜂窝广域网络和互联网连接器的作用。非蜂窝广域网络更是蜂窝网络的拓展延伸。非蜂窝广域网络不同的无线接入技术可以满足物联网实际部署中各种各样无线连接的应用需求,为传感器网络或设备联网提供了灵活的无线接入方式和便捷的网络部署。

非蜂窝和蜂窝技术也可以相互融合。最近有报道称,在手机上集成了无线通信技术,可以在没有蜂窝网络的情况下,实现两机或多机的无线远距离相互通信,并可以实现自组网、定位等功能,这也为非蜂窝广域网络的应用提供了新的应用场景。

同时,非蜂窝网络也在国家电网方面具有非常强劲的发展势头。据最近流传的国家电网《电力设备无线传感器网络节点组网协议》显示,针对电力设备无线传感器网络的组网和传感器接入应用,在物理层协议规范中有对CSS物理层进行了定义,”CSS物理层:工作在470-510MHz或者2400-2483.5MHz频段,采用线性调频扩频(CSS)调制。线性调频扩频(CSS)调制应符合LoRaWAN™ 1.1 Specification 和IEEE Std 802.15.4TM-2015物理层的规定”。随着泛在电力物联网的建设发展,非蜂窝广域网络在泛在电力物联网中将会有着更为广阔的应用场景。除电力市场之外,其他抄表类市场应用,如:水表、气表、燃气表等,也是非蜂窝广域网络重要的典型应用市场。

另外,在一些重要的应用领域里,考虑到数据和安全等方面的因素,需要非蜂窝网络技术将设备接入到专网上,以保障私域网络的数据隐私和安全性。非蜂窝无线技术以其独特的优势在物联网络应用中发挥着重要的作用。

非蜂窝广域网络可以组建无线传感网络,连接和管理一定范围内大量传感器或设备等,也可以成为一种网络基础设施,由专门公司来提供网络服务,或者说是一种物联网络运营服务。在国外物联网运营模式已开始发展,如Sigfox等。而国内情况还处于探索发展阶段,目前主要还是以提供解决方案为主。

低功耗广域网络市场发展前景看好  非蜂窝广域网络预期规模增速明显

根据IHS Markit预测,2017年全球LPWAN连接数量为8753.7万个,预计到2023年可达171698.4万个,2017-2023年复合增长率(CAGR)为64%。其中,除NB-IoT和LTE-M等蜂窝连接之外,非蜂窝广域网络连接数量2017年为8124.8万个,2023年预计可达84443.6万个,2017-2023年复合增长率(CAGR)为48%。到2023年非蜂窝广域网络连接规模占比约为50%,非蜂窝广域网络市场未来具有很大的发展潜力。

射频收发器受市场关注   Sub-1GHz频段更受青睐

一个完整的应用非蜂窝技术的应用图包括感知层、网络层和应用层。其中感知层中的射频收发器主要用于传感器和网关之间的信息交互。

非蜂窝技术系统应用框图

射频收发器是非蜂窝技术组网应用的关键器件,随着非蜂窝广域网络的发展,射频收发器产品越来越受到市场关注。从业界目前非蜂窝广域网络技术应用情况来看, 采用的都是国外半导体公司的射频收发器产品,这些厂商有Semtech、ST、Silicon Labs、TI、NXP、ON等,鲜有国内半导体公司的产品。Semtech公司的LoRa产品在中国市场上得到了很多公司的支持,国内少数公司通过IP授权的方式获得了LoRa IP,提供本地化产品,这些厂商有翱捷(ASR)、国民技术、华普等公司。随着射频收发器市场需求的发展,国内的一些芯片设计公司也开始研究和开发射频收发器产品。最近有报道称,国内上海磐启微电子有限公司推出了基于CSS技术的Chirp-IOT芯片PAN3028,融合了多维信号调制技术解决了频率不连续对射频的影响,提高了接收灵敏度,在射频收发器领域实现了新的技术突破。Chirp-IOT产品的国产化也填补了中国非蜂窝广域网络市场的空白。

由于射频收发器在Sub-1GHz频段上具有良好的无线传输特性,传输距离远、障碍物穿透能力强等,非蜂窝广域网络基本都是采用Sub-1GHz射频收发器组建网络。下面是关于Sub-1GHz射频收发器主要的厂商:

Sub-1GHz射频收发器厂商

万物智联市场快速发展需求大  集成电路设计国产化迎新机遇

中国市场规模大,对集成电路的需求也大,而目前还较多地依赖于集成电路的进口。根据海关统计,2018年中国进口集成电路有4170亿块,进口金额达3107亿美元。据国家统计局的统计显示,我国2018年集成电路产量1739.47亿个,国产集成电路产量不足进口量一半。近些年,国家不断加大对集成电路产业的政策扶持力度,出现了一大批新的集成电路设计公司,集成电路技术水平也在逐步提升。加之近两年中美贸易环境的变化,加速了集成电路国产化的速度。在涉及到国家核心重要应用领域,仍然是强调国产自主可控。这是中国集成电路设计公司一个重要的发展契机,也是非蜂窝广域网络行业一个发展机会。随着万物智联市场的快速发展,中国集成电路设计也将会迎来一波新的发展机遇。

根据半导体行业协会的统计,2018年中国集成电路设计产值为2519.3亿人民币,同比增长21.5%,2009到2018年中国集成电路设计产值年复合增长率(CAGR)为28.7%,集成电路设计产业保持了较高的发展速度。

结语

CSS技术在无线通信方面具有显著的优势,有助于非蜂窝广域网络实现大范围的组网应用。随着物联网市场无线连接需求的不断增长,射频收发器产品越来越受到芯片公司的关注。而国内射频收发器产品厂商少,行业发展还比较薄弱,需要更多的国内射频收发器厂商共同的参与,助力非蜂窝广域网络行业的发展,赋能非蜂窝广域网无线超连接,创新更多的物联网应用。

未来,随着集成电路技术的不断发展,或许会出现更多的新技术、新产品,这也将会大大丰富非蜂窝广域网络生态。“独木不成林”。需要各行各业共同的参与,建立共建共享共荣的良性发展生态。

雷达系统中采用的脉冲信号难以定性分析,这是因为脉冲宽度和脉冲重复频率不是常数,并在很大程度上依赖于雷达的模式,其有力地阻止了采用射频功率计作为工具,通过平均功率来计算脉冲信号的峰值功率。此外,必须测量许多参数才能有效地表征脉冲信号,包括峰值和平均功率、脉冲波形及脉冲外形,其中包括了上升时间、下降时间、脉冲宽度和脉冲周期。其他测量包括载波频率、占用频谱、载波占空比、脉冲重复频率和相位噪声。频谱分析仪为工程师提供了测量脉冲宽度、峰值功率、相位噪声,以及许多其他重要参数的最佳解决方案。考察脉冲信号 脉冲信号包含了很多跨越广泛频率范围的频谱线(图1)。结果可有三种显示方式,这有赖于脉冲和分辨带宽(RBW)等参数。如果RBW小于频谱线间距,改变它不会改变其测量水平。带宽窄于包络中第一个无效间距(1/脉冲宽度)就可以显示包络频谱。最后,如果带宽宽于无效间距,带宽内的整个频谱下降,这意味着该信号的频谱无法显示。随着带宽的进一步增加,响应接近脉冲的时域函数。依靠脉冲参数,还可以计算出脉冲降敏因子,这减少了频谱分析仪脉冲带宽内的测量水平。在这种情况下,标记读数加上降敏因子等于峰值功率。 RBW值对脉冲信号的测量很重要,这是因为在测量水平上RBW的改变产生变化。脉冲降敏因子取决于脉冲参数和RBW,如果带宽大于频谱线的间距,所测得的幅度依赖于带宽和总信号带宽内的频谱线数目。仪器中的滤波器形状决定着RBW校正因子,这是因为带宽的形状反映了滤波器带宽内的功率。如果RBW太宽,频谱线或包络频谱变成时域谱,并且RBW滤波器的脉冲响应变得很明显。 在时域使用频谱分析仪,就有可能获得脉冲宽度的直接测量。峰值标记允许峰值功率的测量,而增量标记允许参数的测量,例如上升时间、下降时间、脉冲重复间隔及过冲。通过宽RBW和视频带宽(VBW),频谱分析仪可以追踪射频脉冲的包络,以便可以看到脉冲的冲击响应。最高RBW/VBW限制了频谱分析仪测量窄脉冲的能力,并且通用规则长期以来一直认为最短的脉冲是可测的,其脉冲宽度应大于或等于2/RBW 。 雷达系统通常在射频脉冲内采用调制。了解这种调制的功率特性很重要,这是因为雷达范围受到脉冲内可获得功率的限制。反过来说,更长的脉冲长度将导致有限的分辨率。调制制式可能的范围从简单的FM(调频)到复杂的数字调制制式,其可以支持现代频谱分析仪。频谱分析仪也可以测量传统的模拟调制脉冲(AM、FM、相位调制) 。此外,其还可以执行分析功能,这涉及许多数字调制制式的解调制,如射频脉冲内的巴克码BPSK调制、脉冲到脉冲的相位测量等。 脉冲功率测量和探测器 在雷达发射机中,测试输出功率是一个重要的测量,并且可以采用几种不同类型的测量。平均功率通常采用功率计作为均值功率测量。另一个重要的值是峰值功率,且如果脉冲重复频率(PRF)和脉冲宽度已知,就可以计算出所测到的平均功率。 在频谱分析仪上采用光栅扫描CRT显示器(或LCD)来显示时域信号波形。这些显示器中的象素数目,在振幅轴以及在时间(或频率)轴是有限的。这导致幅度和频率或时间的有限分辨率。为了显示扫描到的全部测量数据,探测器被用来将数据采样压缩到显示像素许可的数量。 对于峰值功率的测量,频谱分析仪具有峰值检测器,其可以显示某个给定测量区间内的最高功率峰值。然而,对于调幅信号的平均功耗测量,如脉冲调制信号,频谱分析仪中的峰值探测器是不适合的,这是因为峰值电压与信号功率无关。然而,这些仪器也提供了抽样探测器或rms探测器。 抽样探测器每个测量点检查包络电压一次,并显示结果,但这可能引起信号信息的总损耗,这是因为可在屏幕x轴上获得的像素数量是有限的。rms探测器在ADC的全采样率下采样包络信号,并且单个像素范围内的所有采样被用于rms功率的计算。因此,rns探测器显示了比抽样检测器更多的测量样本。 通过将功率计算公式用于所有样本,每个像素都代表了rms探测器测量的频谱功率。对于高重复性,可以通过扫描时间来控制每个象素的样本数量。越长的扫描时间,时间间隔上每个像素的功率积分也随之增加。在脉冲信号下,可重复性依赖于像素内的脉冲数量。对平滑部分,稳定的rms追踪结果,扫描时间必须设为足够长的值,以便在一个像素内捕捉几个脉冲。rms探测器计算所有样本的rms值,这由屏幕上的一个单一像素来线性地代表。 为了精确测量脉冲调制信号的峰值和均值功率,该仪器的IF带宽和ADC转换器的采样率必须足够高,以便其不会影响脉冲的形状。例如,罗德与施瓦茨(R&S)公司的FSP频谱分析仪中可以获得10MHz分辨带宽和32MHz采样率,在脉冲宽度窄至500ns的高精度下测量脉冲调制信号是可能的。 测试设备实例 对本文中的测量例子,R&S SMU信号发生器被用于创建模拟雷达信号,并且输出信号是AM调制射频载波。利用任意波形发生器来产生宽带AM调制,以创建一个具有500 ns脉冲宽度和1kHz PRF的脉冲序列。脉冲水平随时间变化,来模拟长期平均功率测量的天线旋转效果。 对于测量峰值功率,频谱分析仪必须设为足够宽的RBW和VBW以便在脉冲宽度内稳定。在这种测量中,RBW和VBW设为10MHz。频谱分析仪设到零跨度,并显示功率随时间的变化。扫描时间设为允许探测单一脉冲的值。频谱分析仪采用视频触发来显示稳定的脉冲形状显示。脉冲宽度被改变,并且采用100ns、200ns和500ns的脉冲宽度来绘制三个测量结果,从而研究分辨滤波器稳定时间带来的影响。典型峰值功率测量的三个结果如图2所示。 蓝色虚线是采用500 ns脉冲宽度测量的,并在脉冲顶部显示出一个平坦响应。绿色虚线是采用200 ns脉冲宽度测量的。此值等于计算得到的稳定时间。该测量中的峰值水平刚刚达到500 ns脉冲的实测值。标记1(T2)被设为峰值,显示为9.97dBm。该脉冲宽度是10MHz分辨带宽下可以准确测量的最小值。红色实线是采用100ns脉冲宽度测得的,其短于分解滤波器的稳定时间。在该图中,增量标记读数“Delta 2 (T3)”设定为峰值,并显示出对归一化脉冲水平大约3dB的损耗。很专业的问题,希望能帮到你。

就是利用车辆经过检测区域时引起雷达电磁波返回时间或频率的变化进行车辆检测,安装维护方便、使用寿命长、几乎不受光照度、灰尘以及风、雨、雾、雪等天气气候影响。因此,相较于视频检测技术,雷达检测技术作为新一代路面非接触式交通信息采集技术更具应用与发展前景。而将雷达技术应用于交通信息采集关键是要解决从微波(指波长在1mm~1m,频率在300mhz~300ghz范围内的电磁波,是无线电波中分米波、厘米波、毫米波和亚毫米波的统称。)雷达回波信号中提取车辆信息问题。简单来说,就是利用雷达技术所具有的测速和测距功能来实现交通信息的实时检测。

根据城市道路环境特点与应用需求,巍泰技术基于多普勒效应测速技术与FMCW原理测距技术,推出了可检测车速、车流量与平均车速的侧向安装(侧装)交通流量监测雷达TBR-540,以及可以准确检测车速、平均速度、车流量、车型、车道占有率、车头时距、交通拥堵情况、车辆逆行状况等交通基本信息的正向安装(顶装)的广域多目标雷达WTR-470与交通流量计雷达WTR-422。其中,WTR-470与WTR-422均采用了毫米波技术原理,可分别检测双向6车道与8个车道上的128个目标车辆的深度信息,并进行实时跟踪,具有不受光、热、雾、烟、灰尘等外界环境因素的影响,抗干扰能力强,环境适应性好,全天候不间断工作的特性。