1,JS的解构赋值是ES6新增的一种赋值方法,一般分为对象解构与数组解构两种形式;
对象解构赋值:
let obj = {
x: 'Json',
y: 25,
}
let {x, y} = person
console.log(x,y)// Json 25
var o = {p: 42, q: true}
var {p: foo, q: bar} = o// 将o的p值赋给变量foo,将o的q值赋值给变量bar。
var {p: foo, q: bar} = o等价于({p: foo, q: bar} = o)
数组结构赋值:
let [x, y] = ['a', 'b', 'c']
console.log(x,y)// a b
注意点:
1,解构赋值等号两边结构需要一样,所有变量才能正常解析赋值;
2,若左边结构少于右边,左边按结构赋值,右边多余不管;
3,若右边结构少于左边,左边结构将不赋值,为undefined,若左边给默认值将为默认值,如 let {x,y = 3} = {1}x = 1, y = 3
4,凡是有默认值,若正常赋值,默认值会被覆盖;
4,不能将数组解构赋值给对象的解构赋值;如:const {x, y} = ['a', 'b'];x,y值将为undefined.
模块化在项目中十分的重要,一个复杂的项目肯定有很多相似的功能模块,如果每次都需要重新编写模块肯定既费时又耗力。但是引用别人编写模块的前提是要有统一的“打开姿势”,如果每个人有各自的写法,那么肯定会乱套,下面介绍几种JS的模块化的规范。一:模块化进程一:script标签
这是最原始的 JavaScript 文件加载方式,如果把每一个文件看做是一个模块,那么他们的接口通常是暴露在全局作用域下,也就是定义在 window 对象中,不同模块的接口调用都是一个作用域中,一些复杂的框架,会使用命名空间的概念来组织这些模块的接口。
缺点:
1、污染全局作用域
2、开发人员必须主观解决模块和代码库的依赖关系
3、文件只能按照script标签的书写顺序进行加载
4、在大型项目中各种资源难以管理,长期积累的问题导致代码库混乱不堪
二:模块化进程二:CommonJS规范
该规范的核心思想是允许模块通过require方法来同步加载所要依赖的其他模块,然后通过 exports 或 module.exports 来导出需要暴露的接口。
require("module")
require("../file.js")
exports.doStuff = function(){}
module.exports = someValue
优点:
1、简单并容易使用
2、服务器端模块便于重用
缺点:
1、同步的模块加载方式不适合在浏览器环境中,同步意味着阻塞加载,浏览器资源是异步加载的
2、不能非阻塞的并行加载多个模块
module.exports与exports的区别
1、exports 是指向的 module.exports 的引用
2、module.exports 初始值为一个空对象 {},所以 exports 初始值也是 {}
3、require() 返回的是 module.exports 而不是 exports
exports示例:
// app.js
var circle = require('./circle')
console.log(circle.area(4))
// circle.js
exports.area = function(r){
return r * r * Math.PI
}
module.exports示例:
// app.js
var area = require('./area')
console.log(area(4))
// area.js
module.exports = function(r){
return r * r * Math.PI
}
错误的情况:
// app.js
var area = require('./area')
console.log(area(4))
// area.js
exports = function(r){
return r * r * Math.PI
}
其实是对 exports 进行了覆盖,也就是说 exports 指向了一块新的内存(内容为一个计算圆面积的函数),也就是说 exports 和 module.exports 不再指向同一块内存,也就是说此时 exports 和 module.exports 毫无联系,也就是说 module.exports 指向的那块内存并没有做任何改变,仍然为一个空对象{},也就是说area.js导出了一个空对象,所以我们在 app.js 中调用 area(4) 会报 TypeError: object is not a function 的错误。
总结:当我们想让模块导出的是一个对象时, exports 和 module.exports 均可使用(但 exports 也不能重新覆盖为一个新的对象),而当我们想导出非对象接口时,就必须也只能覆盖 module.exports 。
三:模块化进程三:AMD规范
由于浏览器端的模块不能采用同步的方式加载,会影响后续模块的加载执行,因此AMD(Asynchronous Module Definition异步模块定义)规范诞生了。
AMD标准中定义了以下两个API
1、require([module], callback)
2、define(id, [depends], callback)
require接口用来加载一系列模块,define接口用来定义并暴露一个模块。
示例:
define("module", ["dep1", "dep2"], function(d1, d2){
return someExportedValue
})
require(["module", "../file"], function(module, file){ /* ... */ })
优点:
1、适合在浏览器环境中异步加载模块
2、可以并行加载多个模块
缺点:
1、提高了开发成本,代码的阅读和书写比较困难,模块定义方式的语义不顺畅
2、不符合通用的模块化思维方式,是一种妥协的实现
四:模块化进程四:CMD规范
CMD(Common Module Definition)规范和AMD很相似,尽量保持简单,并与CommonJS和Node.js的 Modules 规范保持了很大的兼容性。在CMD规范中,一个模块就是一个文件。
示例:
define(function(require, exports, module){
var $ = require('jquery')
var Spinning = require('./spinning')
exports.doSomething = ...
module.exports = ...
})
优点:
1、依赖就近,延迟执行
2、可以很容易在 Node.js 中运行
缺点:
1、依赖 SPM 打包,模块的加载逻辑偏重
AMD和CMD的区别
AMD和CMD起来很相似,但是还是有一些细微的差别,让我们来看一下他们的区别在哪里:
1、对于依赖的模块,AMD是提前执行,CMD是延迟执行。
2、AMD推崇依赖前置;CMD推崇依赖就近,只有在用到某个模块的时候再去require。看代码:
// AMD
define(['./a', './b'], function(a, b){ // 依赖必须一开始就写好
a.doSomething()
// 此处略去 100 行
b.doSomething()
...
})
// CMD
define(function(require, exports, module){
var a = require('./a')
a.doSomething()
// 此处略去 100 行
var b = require('./b')
// 依赖可以就近书写
b.doSomething()
// ...
})
3、AMD 的 API 默认是一个当多个用,CMD 的 API 严格区分,推崇职责单一。
五:模块化进程五:ES6模块化
EcmaScript6标准增加了JavaScript语言层面的模块体系定义。ES6 模块的设计思想,是尽量的静态化,使得编译时就能确定模块的依赖关系,以及输入和输出的变量。CommonJS和AMD模块,都只能在运行时确定这些东西。
在 ES6 中,我们使用export关键字来导出模块,使用import关键字引用模块。需要说明的是,ES6的这套标准和目前的标准没有直接关系,目前也很少有JS引擎能直接支持。因此Babel的做法实际上是将不被支持的import翻译成目前已被支持的require。
尽管目前使用import和require的区别不大(本质上是一回事),但依然强烈推荐使用import关键字,因为一旦JS引擎能够解析ES6的import关键字,整个实现方式就会和目前发生比较大的变化。如果目前就开始使用import关键字,将来代码的改动会非常小。
示例:
import "jquery"
export functiondoStuff(){}
module "localModule" {}
优点:
1、容易进行静态分析
2、面向未来的 EcmaScript 标准
缺点:
1、原生浏览器端还没有实现该标准
2、全新的命令字,新版的 Node.js才支持
JavaScript中的运算符优先级是一套规则。该规则在计算表达式时控制运算符执行的顺序。具有较高优先级的运算符先于较低优先级的运算符执行。例如,乘法的执行先于加法。
算数运算符:
加+,减—,乘*,除/,求余%,加加++,减减——,
加减乘除求余运算与数学上的用法完全一样。
不过,加号+还有连接字符串的作用,其他运算符还可以将字符串数字转换成数值型,参见 JavaScript中数据类型转换总结 中的隐式转换部分。
++,——分为前置和后置,前置表示在使用该变量之前加/减1,后置表示在使用之后加/减1。
逻辑运算符:
1.&&: 与运算, 当与运算的两个内容都为true的时候,结果为true,只要有一个内容为false,结果都是false,&&可以读作“并且”
2.||: 或运算, 当或运算的两个内容都为false的时候,结果为false,只要有一个内容为true,结果都是true,|| 可以读作“或者”
3.!:非运算, 取反运算,当内容为true时,取反结果为false,当内容为false时,取反结果为true
补充:
&&与||的其他用法
&&
如果两个操作数都不是布尔类型
且两个数值转换成布尔类型都是true,返回第二个操作数
如果有一个操作数转换成布尔类型是false,返回这个数
var b=undefined&&null
console.log(b)
返回undefined
||
如果两个操作数都不是布尔类型
第一个数转换成布尔类型为true,则不往下看,返回第一个数
如果第二个数转换成布尔类型为true,则返回第二个数值。
比较运算符:
== 相等操作符
如果两个操作数相等,则返回 true。
!= 不相等操作符
如果两个操作数不相等,则返回 true。
这两个操作符都会先转换操作数(通常称为强制转型),然后再比较它们的相等性。在转换不同的数据类型时,相等和不相等操作符遵循下列基本规则:
1、 如果有一个操作数是布尔值,则在比较相等性之前先将其转换为数值——false 转换为 0,而true 转换为 1;
2、如果一个操作数是字符串,另一个操作数是数值,在比较相等性之前先将字符串转换为数值;
3、 如果一个操作数是对象,另一个操作数不是,则调用对象的 valueOf()方法,用得到的基本类型值按照前面的规则进行比较;
这两个操作符在进行比较时则要遵循下列规则。
1、 null 和 undefined 是相等的。
2、 要比较相等性之前,不能将 null 和 undefined 转换成其他任何值。
3、 如果有一个操作数是 NaN,则相等操作符返回 false,而不相等操作符返回 true。重要提示:
即使两个操作数都是 NaN,相等操作符也返回 false;因为按照规则, NaN 不等于 NaN。
如果两个操作数都是对象,则比较它们是不是同一个对象。如果两个操作数都指向同一个对象,
则相等操作符返回 true;否则,返回 false。
下表列出了一些特殊情况及比较结果:
=== 全等操作符
在两个操作数未经转换就相等的情况下返回 true。即数值和类型都相同。
var result1 = ("55" == 55)//true,因为转换后相等
var result2 = ("55" === 55)//false,因为不同的数据类型不相等
!== 不全等操作符
在两个操作数未经转换就不相等的情况下返回 true。数据类型不同就不等。
var result1 = ("55" != 55)//false,因为转换后相等
var result2 = ("55" !== 55)//true,因为不同的数据类型不相等
赋值运算符:
=,+=,-=,*=,/=
简单的赋值操作符由等于号(=)表示,其作用就是把右侧的值赋给左侧的变量。
如果在等于号(=)前面再添加乘性操作符、加性操作符或位操作符,就可以完成复合赋值操作。
num = num + 10等同于num += 10
设计这些操作符的主要目的就是简化赋值操作。使用它们不会带来任何性能的提升。
三元运算符:
? :
举个例子:
var max = (num1 >num2) ? num1 : num2
在这个例子中, max 中将会保存一个最大的值。这个表达式的意思是:如果 num1 大于 num2(关系表达式返回 true),则将 num1 的值赋给 max;如果 num1 小于或等于 num2(关系表达式返回 false),则将 num2 的值赋给 max。
位运算符:
JavaScript也有位运算符,需要先转换成16进制数进行运算,在开发中好像还没有用到过,了解一下即可。
javascript 中运算符优先级