初识 D3.js :打造专属可视化

JavaScript032

初识 D3.js :打造专属可视化,第1张

随着现在自定义可视化的需求日益增长,Highcharts、echarts等高度封装的可视化框架已经无法满足用户各种强定制性的可视化需求了,这个时候D3的无限定制的能力就脱颖而出。

如果想要通过D3完成可视化,除了对于D3本身API的学习, 关于web标准的HTML, SVG, CSS, Javascript 和 数据可视化的概念以及标准都是需要学习的。这无疑带来了较高的学习门槛,但这也是值得的,因为掌握 D3 后,我们几乎可以实现任何 2d 的可视化需求。

本文通过对D3核心模块分析以及进行具体案例实践的方式,来帮助初学者学习了解D3的绘图思路。

D3的全称是 Data-Driven Documents(数据驱动文档),是基于数据来操作文档的 JavaScript 库,其核心在于使用绘图指令对数据进行转换,在源数据的基础上创建新的可绘制数据, 生成SVG路径以及通过数据和方法在DOM中创建数据可视化元素(如轴)。

相对于Echats等开箱即用的可视化框架来说,D3更接近底层,它可以直接控制原生的SVG元素,并且不直接提供任何一种现成的可视化图表,所有的图表都需我们在它的库里挑选合适的方法构建而成,这也大大提高了它的可视化定制能力。而且D3 没有引入新的图形元素,它遵循了web标准(HTML, CSS, SVG 以及 Canvas )来展示数据 ,所以它可以不需要依赖其他框架独立运行在现代浏览器中。

在V4版本后,D3的 API 现在已经被拆分成一个个模块,我们可以根据自己的可视化需求进行按需加载。根据泛义可以将D3 API模块分为以下的几大类: DOM操作、数据处理,数据分析转换、地理路径,行为等

这里我们主要对 D3-selection 和 D3-scale 模块进行解析:

D3-selection (选择集) 是 D3js的核心模块,主要是用来进行选择元素,设置属性、数据绑定,事件绑定等操作。

选择元素: D3-selection 提供了两种方法来获取目标元素,d3.select():返回目标元素的第一个节点,d3.selectAll():返回目标元素的集合,乍一看有点类似原生API 的 querySelector 和 querySelectorAll,但是 d3.select 返回的是一个 selection 对象,querySelector 返回的是一个 NodeList 数组。通过控制台打印的信息,可以看到 selection 下的 groups 存放了所有选择的元素集合,parents 存放了所有选中元素的父节点。

设置属性或者绑定事件: 我们不需要关心 groups 的结构是怎么样的。当调用 selection.attr 或者 selection.style 的时候, selection 中的所有 group 的所有子元素都会被调用,group 存在的唯一影响是: 当我们传参是一个function 的时候,例如 selection.attr('attrName', function(data, i)) 或 selection.on('click', function(data, i)) 时, 传递的 function(data, i) 中, 第二个参数 i 是元素在 group 中的索引而不是在整个 selection 中的索引。

数据绑定: 实际上是给选择的DOM元素的 __data__ 属性赋值,这里提供了3种方式进行数据绑定:

(1)给每一个单独的 DOM 元素调用 selection.datum:d3.select('body').datum(20) 等价于 document.body.__data__ = 20

(2)从父节点中继承来数据, 比如: append , insert , select,子节点会主动继承父节点的数据:

(3) 调用 selection.data() 方法,支持传入装有基础数据类型的数据,也支持传入一个function(parentNode, groupIndex)根据节点索引与数据做映射,data()方法引入了 d3 中非常重要的 join 思想:

绑定 data 到 DOM 元素, 在D3中是通过比较 data 和 DOM 的 key 值来找到对应关系的。 如果我们没有单独设置 key 值,那么默认根据 data 的下标索引来设定,但是当数据顺序发生改变,这个默认下标 key 值 就变得不可靠了,这时我们可以使用 selection.data(data, keyFunction) 中的第二个参数 keyFunction,根据当前的数据返回一个对应的 key 值。通过下面的图例可以看出,不管是有一个还是多个 group(每个group 都是独立的),只要我们保证在任意一个 group 中的 key 值是唯一的,数据一旦发生变化都会反映给对应的 DOM 元素( update 的过程):

上面提到的都是data数据和DOM元素数量相同的情况下的数据绑定,那如果data数据和DOM元素数量不相同时,我们来看看 D3 又是如何进行数据绑定的:现在终于可以来介绍 D3-selecion 模块的核心 Join 思想了,这个思想简单来说就是 “不应该告诉D3去怎么创建元素, 而是告诉D3,.selectAll() 得到的 selecion 集合应该和 .data(data) 绑定的数据要怎么一一对应”。

从上图可以看出,在进行 d3.data(data) 数据绑定的时候,会产生三种状态的选择集:

用 Join 的方式来理解意味着,我们要做的事情仅仅是声明 DOM集合和数据集合之间的关系, 并且通过处理三个不同状态的集合 enter、update 、 exit 来描述这种关系。这种方式可以大大简化我们对DOM元素的操作,我们不需要再用 if 和 for 循环的方式来进行复杂的逻辑判断,来得到我们需要得到的元素集合。并且在处理动态数据的时候,可以通过处理这三种状态,轻松的展示实时数据和添加平滑的动态交互效果。

D3-scale (比列尺) 提供多种不同类型的比例尺。经常和 D3-axis 坐标轴模块一起使用。

D3-scale 提供了多种连续性和非连续性的比例尺,总体可以将他们分为三大类:

常用的一些比例尺:

(1)d3-scaleLinear 线性比例尺(连续性输入和连续性输出)

可以看出,调用d3.scaleLinear()可以生成线性比例尺,domain()是输入域,range()是输出域,相当于将domain中的数据集映射到range的数据集中。

使用示例:

映射关系:

(2)d3-scaleTime 时间比例尺(连续性输入和连续性输出)

时间比例尺与线性比例尺类似,只不过输入域变成了一个时间轴。正常我们使用比例尺都是个正序的过程,但是D3也提供了invert()以及invertExtent()方法,我们可以通过输出域中的具体值得出对应输入域的值。

使用示例:

(3)d3.scaleQuantize 量化比例尺(连续性输入和离散性输出)

量化比例尺是将连续的输入域根据输出域被分割为均匀的片段,所以它的输出域是离散的。

使用示例:

映射关系:

(4)d3. scaleThreshold 阈值比例尺(连续性输入和离散性输出)

阈值比例尺可以为一组连续数据指定分割阈值,阈值比例尺默认的 domain:[0.5] 以及默认的 range:[0, 1] ,因此默认的 d3.scaleThreshold() 等价于 Math.round 函数。 阈值比例尺输入域为 N 的话,输出域必须为 N + 1,否则比例尺对某些值可能会返回 undefined,或者输出域多余的值会被忽略。

使用示例:

存在三种映射关系:

a. 当domain和range的数据是 N : N+1

b. 当domain和range的数据是 N : N + 大于1

c. 当domain和range的数据是 N + 大于0 : N

(5)d3.scaleOrdinal 序数比例尺(离散性输入和离散性输出)

与scaleLinear等连续性比例尺不同,序数比例尺的输出域和输入域都是离散的。

使用示例:

存在三种映射关系:

a.当domain和range的数据是一一对应

b.当domain少于range的数据

c.当domain多于range的数据

通过以上的学习,应该对d3是如何操作DOM以及坐标轴的数据映射为相应的可视化表现有了一定的了解,下面我们来实际运用这两个模块,来实现我们常见的可视化图表:柱状图。

(1)首先添加一个SVG元素。

(2)根据我们上面说到 d3.scale 模块以及 d3.axis 模块绘制坐标轴,d3.scaleBand() 叫做序数分段比例尺,类似我们说的 d3.scaleOrdinal() 序数比例尺,但是它支持连续的数值类型的输出域,离散的输入域可以将连续的范围划分为均匀的分段。这里再讲一个细节,在绘制网格的时候,我们并没有额外添加 line 元素来实现,而是通过 d3.axis 坐标轴模块的 axis.ticks() 方法对坐标轴刻度进行了设置,通过 tickSIze() 设置了刻度线长度,来模拟和图表宽度相等的网格线,并且还可以通过 tickFormat() 对Y轴刻度值进行格式化转换。

(3)坐标轴绘制好了后,我们通过数据绑定来绘制与之对应的矩形(rect)元素了。

(4)这个时候柱状图已经基本绘制好了,我们再丰富内容展示,添加标签、标题等提示信息。

(5)最后我们通过给柱子绑定监听事件,实现tooltips的信息浮层交互。

通过对 d3.selection 、d3.scale 以及 d3.axis等模块的学习,我们已经可以绘制出常用的柱状图等图表,我们也可以通过d3提供的其他模块绘制出更加复杂的可视化效果,例如通过 d3-hierarchy(层级模块) 实现层级树图可视化,d3-geo(地理投影) 实现地图数据可视化等,本文讲解的内容还只是D3库的冰山一角。所以等我们掌握了D3后,限制我们实现可视化的不再是技术而是想象力。

Gio.js 是一个基于Three.js的web 3D地球数据可视化的开源组件库。使用Gio.js的网页应用开发者,可以快速地以申明的方式创建自定义的Web3D数据可视化模型,添加数据,并且将其作为一个组件整合到自己的应用中。

Gio.js 是一个基于Three.js的web 3D地球数据可视化的开源组件库。使用Gio.js的网页应用开发者,可以快速地以申明的方式创建自定义的Web3D数据可视化模型,添加数据,并且将其作为一个组件整合到自己的应用中。

这个库的开发是受到Google 2012 Info大会上的某项目可视化的启发,该项目开发者是Google员工Michael Chang。使用Gio.js就可以快速构建这种炫酷的3D模型,并以此为基础进行深入地开发。

在HTML的<head>中引入Three.js和Gio.js依赖, 以下展示了如何使用<script>标签引入依赖:

在引入Three.js和Gio.js在页面之后,已经可以创建3D Gio地球了。在此我们将先展示如何创建基础样式的Gio地球。

创建一个<p>,Gio地球将会被渲染在这个区域中:

添加一下4行Javascript代码在你的HTML中, 用以创建并渲染:

在Gio.js 1.0发布之后,开发者们提出了很多很酷的、很有建设性的建议,比如微信应用开发者希望Gio.js支持微信小程序,有经验的Three.js开发者希望Gio.js提供Three.js编程接口等。在经过仔细研究、综合设计之后,Gio.js 2.0实现了大部分功能,并且添加了有关文档说明。以下列出了主要的2.0新增特性:

Gio.js仅依赖于Three.js。

经过测试,Gio.js在Three.js R90版本下可以很好地运行和使用。

Gio.js可以运行在以下的浏览器环境中:

更多详细的介绍就不在本文中介绍了,官方文档非常详细,感兴趣的小伙伴可以直接移步文档:

Gio.js可以说是Three.js中实践的非常不错的了,官方还提供了非常多的实例,通过一些简单的API配置即可实现非常炫酷的Web3D可视化地球,而且文档非常详细,更多实用和有趣的地方等待你的 探索 !

无意中从今日头条中看到的一篇文章,可以生成简单的图表。据说一些大数据开发们也是经常用类似的图表库,毕竟有现成的,改造下就行,谁会去自己造轮子呢。pyecharts是什么? pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒, pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图 。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。 安装很简单:pip install pyecharts 如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,简直不要太强大。参考自pyecharts官方文档: http://pyecharts.org首先开始来绘制你的第一个图表使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可 add() 主要方法,用于添加图表的数据和设置各种配置项 render() 默认将会在根目录下生成一个 render.html 的文件,文件用浏览器打开。使用主题自 0.5.2+ 起,pyecharts 支持更换主体色系 使用 pyecharts-snapshot 插件 如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。 安装 phantomjs $ npm install -g phantomjs-prebuilt 安装 pyecharts-snapshot $ pip install pyecharts-snapshot 调用 render 方法 bar.render(path='snapshot.png') 文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。 图形绘制过程 基本上所有的图表类型都是这样绘制的: chart_name = Type() 初始化具体类型图表。 add() 添加数据及配置项。 render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。 add() 数据一般为两个列表(长度一致)。如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。 多次显示图表 从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。如果使是 Numpy 或者 Pandas,可以参考这个示例当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加  pythonic  的做法。直接调用本身实例就可以了。 比如这样 还有这样如果使用的是自定义类,直接调用自定义类示例即可图表配置 图形初始化 通用配置项 xyAxis:平面直角坐标系中的 x、y 轴。(Line、Bar、Scatter、EffectScatter、Kline) dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot) legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。 label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。 lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel) grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D) axis3D:3D 笛卡尔坐标系 X,Y,Z 轴配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D) visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道) markLine&markPoint:图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种。(Bar、Line、Kline) tooltip:提示框组件,用于移动或点击鼠标时弹出数据内容 toolbox:右侧实用工具箱图表详细Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) EffectScatter(带有涟漪特效动画的散点图) Funnel(漏斗图) Gauge(仪表盘) Geo(地理坐标系) GeoLines(地理坐标系线图) Graph(关系图) HeatMap(热力图) Kline/Candlestick(K线图) Line(折线/面积图) Line3D(3D 折线图) Liquid(水球图) Map(地图) Parallel(平行坐标系) Pie(饼图) Polar(极坐标系) Radar(雷达图) Sankey(桑基图) Scatter(散点图) Scatter3D(3D 散点图) ThemeRiver(主题河流图) TreeMap(矩形树图) WordCloud(词云图) 用户自定义 Grid 类:并行显示多张图 Overlap 类:结合不同类型图表叠加画在同张图上 Page 类:同一网页按顺序展示多图 Timeline 类:提供时间线轮播多张图 统一风格注:pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。地图文件被分成了三个 Python 包,分别为: 全球国家地图: echarts-countries-pypkg 中国省级地图: echarts-china-provinces-pypkg 中国市级地图: echarts-china-cities-pypkg 直接使用python的pip安装但是这里大家一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。 显示如下:总得来说,这是一个非常强大的可视化库,既可以集成在flask、Django开发中,也可以在做数据分析的时候单独使用,实在是居家旅行的必备神器啊