如:9999999999999999 === 10000000000000001
如:1.335.toFixed(2) // 1.33;1.336.toFixed(2) // 1.34
二进制模仿十进制进行四舍五入,而二进制只有0和1,于是就0舍1入,于是就导致了小数计算不精确。大数的精度丢失本质上是和小数一样,js中表示最大的数是Math.pow(2, 53),十进制即 9007199254740992;大于该数的值可能会丢失精度。
小数的话,一般转成整数进行计算,然后对结果做除法;同样也可以直接对结果进行4舍5入;
对于大数出现的问题概率较低,毕竟还要运算结果不超过最大数就不会丢失精度;
javaScript数字精度丢失问题总结
js中精度问题以及解决方案
JavaScript 中精度问题以及解决方案
JavaScript 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。下面就分析下为什么会有这个精度误差,以及怎样修复这个误差。首先,我们要站在计算机的角度思考 0.1 + 0.2 这个看似小儿科的问题。我们知道,能被计算机读懂的是二进制,而不是十进制,所以我们先把 0.1 和 0.2 转换成二进制看看:
0.1 =>0.0001 1001 1001 1001…(无限循环)
0.2 =>0.0011 0011 0011 0011…(无限循环)
双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到这么一串 0.0100110011001100110011001100110011001100110011001100 因浮点数小数位的限制而截断的二进制数字,这时候,我们再把它转换为十进制,就成了 0.30000000000000004。
原来如此,那怎么解决这个问题呢?我想要的结果就是 0.1 + 0.2 === 0.3 啊!!!
有种最简单的解决方案,就是给出明确的精度要求,在返回值的过程中,计算机会自动四舍五入,比如:
var numA = 0.1
var numB = 0.2
alert( parseFloat((numA + numB).toFixed(2)) === 0.3 )
乘法运算中有这种,比如0.58*100,结果是57.99999999999999。可以用Math.round()进行处理,
------||-------
尽量避免对小数进行操作,先处理成整数后在进行操作,其结果会比较精确。