[R语言]boxplot绘图经验总结

[R语言]boxplot绘图经验总结

这里,我们采用了stripchart函数以及RColorBrewer包来添加数据点并调整颜色。 注意,此时应当利用boxplot函数里面的内置参数names设置每个箱线图的特征名。并且将stripchart函数里面的数据用列表并起来。
Python220
R语言ggcorrplot包绘制相关性热图

R语言ggcorrplot包绘制相关性热图

热图是科研论文中一种常见的可视化手段,而在转录组研究领域,我们常常需要分析一些基因与基因之间的相关性,来判断生物样本中是否存在共表达情况,以及共表达基因模块。除了基因集之间,其他方向,比如免疫细胞群体之间相关性,样本的相关性,也常常用相关性
Python170
R语言学习DAY04:回归分析

R语言学习DAY04:回归分析

R本身是一门统计语言,主要用于统计分析,前面的语法部分算是基础,接下来开始进入统计模型应用。首先从最常用的回归分析说起。 有关线性回归分析模型的基本假定需要注意:1)关于随机干扰项的高斯-马尔科夫定理;2)关于自变量的:不存在共线性;3
Python320
R语言相关性分析

R语言相关性分析

1.  R语言自带函数cor(data, method=" ")可以快速计算出相关系数 ,数据类型:data.frame  如data.frame为:zz, 绘图如下:a. single protein:线性
Python190
R语言进行相关性分析

R语言进行相关性分析

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性分析旨在研究两个或两个以上随机变量之间相互依存关系的方向和密切程度。一般来讲研究对象(样品或处理组)之间使用距离分析,而元素(物种或
Python120
回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python100
r语言线性回归分析怎么看正负相关

r语言线性回归分析怎么看正负相关

看回归方程y=a+bx中的b值的正负,如果b是正数,就是正相关;如果b是负数,就是负相关。b值只能用来判断相关性的正负,但b并不是相关系数,相关系数在线性回归方程中是确定系数R^2的平方根R值,其正负号由b值的正负号决定。cor()函数可以
Python190
R语言中 关于求一个矩阵的相关系数的问题

R语言中 关于求一个矩阵的相关系数的问题

analyze-correlate-bivariate-选择变量ok输出的是相关系数矩阵相关系数下面的sig.是显著性检验结果的p值,越接近0越显著。另外,表格下会显示显著性检验的判断结果,你看看表格下的解释就知道,比如“**.correl
Python130
回归分析 | R语言 -- 多元线性回归

回归分析 | R语言 -- 多元线性回归

多元线性回归是简单线性回归的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y​​的预测由以下等式表示:y = b0 + b1*x1 + b2*x2 + b3*x3回
Python110
拟合优度R2的计算公式

拟合优度R2的计算公式

拟合优度R2的计算公式:R2=1-"回归平方和在总平方和中所占的比率;R2的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R²的值越小,说明回归直线对观测值的拟合程度越差。指回归直线对观测值的拟合程度。度量拟合优度的统计
Python170
如何用R语言进行相关系数与多变量的meta分析

如何用R语言进行相关系数与多变量的meta分析

本文第一大部分将介绍用R软件的meta分析数据包实现相关系数的Meta分析,第二大部分如何用R语言进行多变量的meta分析。 想获取R语言相关系数meta分析的程序模板的同学请在公众号(全哥的学习生涯)内回复“相关系数”即可。 me
Python120
如何用R语言进行相关系数与多变量的meta分析

如何用R语言进行相关系数与多变量的meta分析

本文第一大部分将介绍用R软件的meta分析数据包实现相关系数的Meta分析,第二大部分如何用R语言进行多变量的meta分析。 想获取R语言相关系数meta分析的程序模板的同学请在公众号(全哥的学习生涯)内回复“相关系数”即可。 me
Python340
基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析主要步骤:将数据存成csv格式,逗号分隔在R中,读取数据,然后将数据转成矩阵形式加载lars包,先安装调用lars函数确定Cp值最小的步数确定筛选出的变量,并计算回归系数具体代码如下: 需要注意的地方: 1、
Python170
R语言长时间序列栅格数据之逐像素相关性分析

R语言长时间序列栅格数据之逐像素相关性分析

假设有两组栅格数据,一组代表2019年中国每月降雨量,一组代表2019年中国每月植被叶面积指数(LAI)。想要得到中国月降水量与LAI的相关性分布,那么需要对两组栅格数据对应的栅格点进行逐栅格的相关性分析。 将降水数据导入栅格栈中,这个
Python190
变异系数怎么计算

变异系数怎么计算

变异系数的计算公式为:变异系数C·V=(标准偏差SD平均值Mean)×100%。(标准偏差SD、平均值MN)。变异系数(Coefficient of Variation):当需要比较两组数据离散程度大小的时候,如果两组数据的测量尺度相
Python180
R语言怎么做多因变量的多元线性回归

R语言怎么做多因变量的多元线性回归

举个例子:一般人在身高相等的情况下,血压收缩压Y与体重X1和年龄X2有关,抽取13组成年人数据(如下图),构建Y与X1、X2的线性回归关系。1.先创建一个数据框blood:  blood&lt-data.frame(     X1
Python120
R语言进行相关性分析

R语言进行相关性分析

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性分析旨在研究两个或两个以上随机变量之间相互依存关系的方向和密切程度。一般来讲研究对象(样品或处理组)之间使用距离分析,而元素(物种或
Python150
R语言ggcorrplot包绘制相关性热图

R语言ggcorrplot包绘制相关性热图

热图是科研论文中一种常见的可视化手段,而在转录组研究领域,我们常常需要分析一些基因与基因之间的相关性,来判断生物样本中是否存在共表达情况,以及共表达基因模块。除了基因集之间,其他方向,比如免疫细胞群体之间相关性,样本的相关性,也常常用相关性
Python370
R软件meta分析结果怎么解读

R软件meta分析结果怎么解读

在做meta分析时,对于计数资料有OR、RR、RD等效应指标可供选择。OR、RR、RD这些指标的选择依赖于文献的结局变量是什么指标。OR是优势比,RR是相对危险度,RD是率差,这三种指标的选择需根据具体的专业问题来选择。在处理组阳性率比较小
Python150
组内相关系数的意义及R语言实现

组内相关系数的意义及R语言实现

组内相关系数(intra-class correlation coefficient, ICC)的用途、类型以及计算。 ICC常用于衡量某个指标(比如,皮层厚度)在多次测量中的一致性相似性(即信度)。在概念上,ICC等于真实的(被试间
Python110