【R语言】非度量多维标度分析法(Non-metric multidimensional scaling,NMDS)

Python016

【R语言】非度量多维标度分析法(Non-metric multidimensional scaling,NMDS),第1张

非度量多维尺度分析(NMDS 分析)是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法,能够反映对象间的顺序关系。与PCoA类似,NMDS可以基于任何类型距离矩阵对对象(样方)进行排序;但也有不同之处,NMDS不在基于距离矩阵数值,而是根据排位顺序进行计算。对于存在距离缺失的数据而言有优势,只要想办法确定对象间的位置关系,即可进行NMDS分析。由于NMDS不是特征根排序技术,也不再让排序轴载更多的变差目的;因此NMDS排序图可以任意旋转、中心化和倒置(赖江山, 数量生态学)。 预先设定排序轴的数量m; 在m维空间内构建对象的初始结构,初始结构是调整对象之间位置关系的起点; 在m维空间内,用一个迭代程序不断调整对象位置,目标是不断最小化应力函数(Stress function,其值被转化为0~1间的数值,可以检验 NMDS 分析结果的优劣。通常认为 stress<0.2 时可用 NMDS 的二维点图表示,其图形有一定的解释意义;当 stress<0.1 时,可认为是一个好的排序;当 stress<0.05 时,则具有很好的代表性)不断调整对象位置,直至应力函数值不再减少,或已达到预定的值; 大部分NMDS会根据PCA结果旋转最终的排序图,使结果更容易解读。 Shepard 图:能够比较NMDS中对象间距离与原始距离测度矩阵中的值或者通过二者间进行线性(Linear fit)或非线性(Non-metric fit)拟合的R^2 评估,拟合R^2 越大越好/两个R^2 值越一致越好。 1、Shepard图的R^2 :拟合R^2 越大越好/两个R^2 值越一致越好; 2、Stress值:Stress<0.2(有一定可靠性);Stress<0.05(结果较好);Stress<0.02(结果很好);Stress<0.01(结果极好)。 注:stress=0.12,说明结果不好,但有一定的可靠性。 图形中的点代表样本,不同颜色/形状代表样本所属的分组信息。同组样本点距离远近说明了样本的重复性强弱,不同组样本的远近则反应了组间样本距离在秩次(数据排名)上的差异。样本相似性距离计算方式对结果有影响,选择输入不同相似性距离值的矩阵,得到的结果存在着不同程度差异。 横纵坐标轴含义:NMDS是距离值的秩次(数据排名)信息的评估,图上样本信息仅反映样本间数据秩次信息的远近,而不反映真实的数值差异,横纵坐标轴并无权重意义,横轴不一定比纵轴更加重要。 NMDS是非参数的方法,不应该有解释量,不知道他们这些NMDS的解释率是怎么算出来的?我估计是用主坐标分析(PCoA)的解释量来作为NMDS的解释量,但这种张冠李戴的做法可能是不合适的(引自赖江山老师: http://blog.sciencenet.cn/blog-267448-1146112.html )。

非度量多维标度(NMDS)分析

非度量多维标度(Non-metric Multidimensional Scaling,NMDS)是一种将多维空间的研究对象(样本或变量)简化到低维空间进行定位、分析和归类,同时又保留对象间原始关系的数据分析方法。

与PCoA相似,NMDS都使用样本相似性距离矩阵进行降维排序分析,但NMDS侧重反映距离矩阵中数值的排序关系,NMDS图形常用作微生物群落研究的β分析。

来看看R的vegan包和ggplot2包是如何绘制NMDS图的。

使用数据文件如下:

①otu_table.txt

②group.txt

方法如下:

1.调用vegan包metaMDS()函数执行NMDS,读取数据;

2.根据物种组成计算样方距离,如 Bray-curtis 距离;

3.NMDS 排序,定义 2 个维度;

4.提取应力函数值、样方得分,查看主要结果;

5.物种变量可通过丰度加权平方被动添加至排序图中;

6.使用ggplot2包作图。

计算β多样性指数需要用到phyloseq包。它的安装方式不同于简单的install.packages(“phyloseq”)

有两种方法可以安装

1.先安装BiocManager

install.packages("BiocManager")

library("BiocManager")

BiocManager::install("phyloseq")

library("phyloseq")

2.source("https://bioconductor.org/biocLite.R")

biocLite("phyloseq")

#安装phyloseq

library("phyloseq")

安装并加载了phyloseq包后,开始读取数据,前面计算α多样性,用到的是read.table……

qiimedata <- import_qiime(otufilename = "feature-table.taxonomy.txt", mapfilename = "mapping_file.txt", treefilename = "tree.rooted.nwk", refseqfilename = "dna-sequences.fasta")

#读取数据,参数都是文件名,注意加后缀

#otufilename指定out表格,mapfilename指定map文件(分组数据)

#treefilename指定有根进化树文件

#refseqfilename指定代表序列文件

otu<-qiimedata@[email protected]

#从qiimedata里面提取otu

sum_of_otus<-colSums(t(otu))

#t_转置,colsums计算列的和,即计算各个otu检测到的总序列数,为了筛掉一些总序列数过低的otu(可能是测序错误)

sum_of_otus

#查看otu总序列数

selected_otu<-names(sum_of_otus)[sum_of_otus>10]

#获取总序列数大于10的otu id

sub_qiimedata <- prune_taxa(selected_otu, qiimedata)

#筛选总序列数大于10的otu的phyloseq数据

weighted_unifrac<-distance(sub_qiimedata,method = 'wunifrac')

#计算样本间加权unifrac

unweighted_unifrac<-distance(sub_qiimedata,method = 'unifrac')

#计算样本间非加权unifrac

bray_curtis <- distance(sub_qiimedata, method='bray')

write.table(as.matrix(bray_curtis),"bray_curtis.txt",sep = '\t',quote = FALSE,col.names = NA)

#保存距离矩阵

#计算样本间Bray-Curtis距离矩阵,method 可选" wunifrac ", " unifrac " ,"jaccard"等

pcoa_of_bray_curtis<-ordinate(physeq=sub_qiimedata,distance = 'bray',method = "PCoA")

#基于Bray-Curtis距离矩阵的PCoA排序分析

p<-plot_ordination(sub_qiimedata, pcoa_of_bray_curtis, type="samples", color="Group1",shape = "Group1")

#将PCoA排序分析结果可视化

library("ggplot2")

p<-p+ scale_colour_manual(values=c("#DC143C","#808000","#00CED1")) + geom_point(size=2) +ggtitle("PCoA of Bray-Curtis distance")+theme(text = element_text(size = 15))

#修改图形大小,ggtitle加标题,stat_ellipse加椭圆

#用scale_colour_manual(values=c())自定义颜色,可查颜色的16进制对照表

p

nmds_of_bray_curtis<-ordinate(physeq=sub_qiimedata,distance = 'bray',method = "NMDS")

#基于Bray-Curtis距离矩阵的NMDS排序分析

p1<-plot_ordination(qiimedata, nmds_of_bray_curtis, type="samples", color="Group1")

#将NMDS排序分析结果可视化

# color=“Group1”指定不同分组的点染不同颜色

p1

p1<-p1+ geom_point(size=3) +ggtitle("NMDS of Bray-Curtis distance") + stat_ellipse()+theme(text = element_text(size = 15))

#对图片进行适当修饰, stat_ellipse()加椭圆, ggtitle()加标题

ggsave(plot = p1,“nmds_of_bary_curtis.pdf",dpi = 300,width

PCoA中的两个点距离,接近β多样性指数

PCA(Principal Components Analysis)即主成分分析,也称主分量分析或主成分回归分析法,首先利用线性变换,将数据变换到一个新的坐标系统中然后再利用降维的思想,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上。这种降维的思想首先减少数据集的维数,同时还保持数据集的对方差贡献最大的特征,最终使数据直观呈现在二维坐标系。

PCoA(Principal Co-ordinates Analysis)分析即主坐标分析,可呈现研究数据相似性或差异性的可视化坐标,是一种非约束性的数据降维分析方法,可用来研究样本群落组成的相似性或相异性。它与PCA类似,通过一系列的特征值和特征向量进行排序后,选择主要排在前几位的特征值,找到距离矩阵中最主要的坐标,结果是数据矩阵的一个旋转,它没有改变样本点之间的相互位置关系,只是改变了坐标系统。两者的区别为PCA是基于样本的相似系数矩阵(如欧式距离)来寻找主成分,而PCoA是基于距离矩阵(欧式距离以外的其他距离)来寻找主坐标。

NMDS图中两个点的距离的排序,接近β多样性指数的排序